
AMBER 7
Users’ Manual

Authors:
David A. Case (The Scripps Research Institute)
David A. Pearlman (Vertex Pharmaceuticals)

James W. Caldwell (UCSF)
Thomas E. Cheatham III (University of Utah)

Junmei Wang (UCSF)
Wilson S. Ross (UCSF)

Carlos Simmerling (SUNY Stony Brook)
Tom Darden (NIEHS)

Kenneth M. Merz (Penn State)
Robert V. Stanton (UCSF)
Ailan Cheng (Penn State)

James J. Vincent (Penn State)
Mike Crowley (TSRI)

Vickie Tsui (TSRI)
Holger Gohlke (TSRI)

Randall Radmer (UCSF)
Yong Duan (UCSF)
Jed Pitera (UCSF)

Irina Massova (UCSF)
George L. Seibel (for contributions to Amber version 3A while at UCSF)

U. Chandra Singh (for contributions to Amber versions 2 and 3 while at UCSF)
Paul Weiner (for contributions to Amber version 1 while at UCSF)

Peter A. Kollman (UCSF)

All contents Copyright (c) 1986, 1991, 1995, 1997, 1999, 2002, University of California.
All Rights Reserved.

Page 2

Acknowledgments

We acknowledge the generous cooperation of Wilfred van Gunsteren, whose molecular dynamics
code was used as the basis of the md modules in version 2.0. We are also pleased to acknowledge
Rad Olson and Bill Swope at IBM Almaden Center, whose contributions were instrumental in
developing the better vector optimized non-bonded routines first released in version 3, revision A.
Research support from DARPA, NIH and NSF for Peter Kollman is gratefully acknowledged, as
is support from NIH, NSF and DOE for David Case. Use of the facilities of the UCSF Computer
Graphics Laboratory (Thomas Ferrin, PI) is appreciated. The pseudocontact shift code was pro-
vided by Ivano Bertini of the University of Florence. We thank Chris Bayly and Merck-Frosst,
Canada for permission to include charge increments for the AM1-BCC charge scheme. Many
people helped add features to various codes; these contributions are described in the documenta-
tion for the individual programs.

Recommended Citations:

When citing Amber Version 7 in the literature, the following citation should be used:

D.A. Case, D.A. Pearlman, J.W. Caldwell, T.E. Cheatham III, J. Wang, W.S. Ross, C.L.
Simmerling, T.A. Darden, K.M. Merz, R.V. Stanton, A.L. Cheng, J.J. Vincent, M. Crow-
ley, V. Tsui, H. Gohlke, R.J. Radmer, Y. Duan, J. Pitera, I. Massova, G.L. Seibel, U.C.
Singh, P.K. Weiner and P.A. Kollman (2002), AMBER 7, University of California, San
Francisco.

The history of the codes and a basic description of the methods can be found in:

D.A. Pearlman, D.A. Case, J.W. Caldwell, W.S. Ross, T.E. Cheatham, III, S. DeBolt, D.
Ferguson, G. Seibel, and P. Kollman. AMBER, a package of computer programs for
applying molecular mechanics, normal mode analysis, molecular dynamics and free
energy calculations to simulate the structural and energetic properties of molecules.
Comp. Phys. Commun.91,1-41 (1995).

Peter Kollman died unexpectedly in May, 2001. We dedicate Amber 7 to his memory.

Cover Illustration
The figure shows the hydration pattern at the interface of a zinc-finger protein-DNA complex.
The protein is represented by its molecular surface, with finger 1 at the bottom right and figure 3
at the top left; the DNA is colored green. Water molecules within 2.3 Å of at least one atom of the
protein and one atom of the DNA are shown as spheres. Waters whose computed residence times
in the interface are > 0.8 ns are colored red, and more transient bridging waters are colored blue.
Figure was prepared by Vickie Tsui, and re-rendered by David Case and Mike Pique. See V.
Tsui, I. Radhakrishnan, P.E. Wright and D.A. Case,J. Mol. Biol.302,1101-1117 (2000).

2/28/02

Table of Contents i

Table of Contents

1. Introduction ... 3

1.1. What to read next ... 3

1.2. Information flow in Amber. .. 4

1.2.1. Preparatory programs .. 5

1.2.2. Simulation programs ... 6

1.2.3. Analysis programs .. 6

1.3. Installation of Amber 7 .. 7

1.3.1. More information on parallel machines or clusters .. 8

1.3.1.1. Shared memory version ... 9

1.3.1.2. MPI version .. 10

1.3.2. Installing on Windows .. 11

1.3.3. Testing. ... 11

1.3.4. Memory Requirements. ... 12

1.4. Basic tutorials .. 12

2. Specifying a force field.. 15

2.1. Description of the database files .. 15

2.2. Specifying which force field you want in LEaP .. 17

2.3. 1999 and 2002 force fields ... 18

2.4. The Cornell et al. (1994) force field .. 19

2.5. The Weiner et al. (1984,1986) force fields .. 20

2.6. Ions .. 20

2.7. Solvent models ... 20

3. LEaP ... 22

3.1. Introduction .. 22

3.2. Concepts .. 22

3.2.1. Commands .. 23

3.2.2. Variables ... 23

3.2.3. Objects .. 24

3.2.3.1. NUMBERs ... 24

3.2.3.2. STRINGs ... 24

3.2.3.3. LISTs ... 24

3.2.3.4. PARMSETs (Parameter Sets) .. 24

3.2.3.5. ATOMs ... 24

3.2.3.6. RESIDUEs ... 26

3.2.3.7. UNITs .. 26

3.2.3.8. Complex objects and accessing subobjects ... 27

3.3. Starting LEaP ... 30

3.3.1. Verbosity ... 30

Table of Contents ii

3.3.2. Log File ... 30

3.4. Using LEaP .. 31

3.4.1. Universe Editor ... 31

3.4.2. Unit Editor .. 32

3.4.2.1. Unit Editor Menu Bar .. 32

3.4.2.2. Unit Editor Manipulation Buttons ... 34

3.4.2.3. Unit Editor Elements Buttons .. 35

3.4.2.4. Unit Editor Viewing Window .. 35

3.4.3. Atom Properties Editor ... 36

3.4.4. Parmset Editor ... 36

3.5. Basic instructions for using LEaP with AMBER .. 37

3.5.1. Building a Molecule For Molecular Mechanics ... 37

3.5.2. Amino Acid Residues ... 38

3.5.3. Nucleic Acid Residues .. 40

3.5.4. Miscellaneous Residues .. 40

3.6. Commands ... 41

3.6.1. add ... 41

3.6.2. addAtomTypes .. 42

3.6.3. addIons .. 42

3.6.4. addIons2 .. 43

3.6.5. addPath .. 43

3.6.6. addPdbAtomMap .. 43

3.6.7. addPdbResMap ... 43

3.6.8. alias ... 44

3.6.9. bond .. 45

3.6.10. bondByDistance .. 45

3.6.11. center ... 45

3.6.12. charge .. 46

3.6.13. check ... 46

3.6.14. combine ... 46

3.6.15. copy ... 47

3.6.16. createAtom .. 47

3.6.17. createParmset .. 48

3.6.18. createResidue .. 48

3.6.19. createUnit .. 48

3.6.20. deleteBond .. 48

3.6.21. desc ... 49

3.6.22. edit .. 50

3.6.23. groupSelectedAtoms ... 50

3.6.24. help ... 50

3.6.25. impose ... 51

3.6.26. list ... 51

Table of Contents iii

3.6.27. loadAmberParams ... 52

3.6.28. loadAmberPrep ... 52

3.6.29. loadOff .. 53

3.6.30. loadPdb ... 53

3.6.31. loadPdbUsingSeq .. 54

3.6.32. logFile ... 55

3.6.33. measureGeom ... 55

3.6.34. quit .. 56

3.6.35. remove .. 56

3.6.36. saveAmberParm .. 57

3.6.37. saveAmberParmPol ... 57

3.6.38. saveAmberParmPert ... 57

3.6.39. saveAmberParmPolPert .. 58

3.6.40. saveOff .. 58

3.6.41. savePdb ... 59

3.6.42. scaleCharges ... 59

3.6.43. sequence .. 59

3.6.44. set .. 60

3.6.45. setBox ... 62

3.6.46. solvateBox .. 62

3.6.47. solvateCap ... 64

3.6.48. solvateDontClip .. 64

3.6.49. solvateOct ... 65

3.6.50. solvateShell ... 65

3.6.51. source .. 66

3.6.52. transform ... 66

3.6.53. translate ... 67

3.6.54. verbosity .. 67

3.6.55. zMatrix .. 67

4. Antechamber ... 69

4.1. Principal programs ... 70

4.1.1. antechamber .. 70

4.1.2. parmchk .. 72

4.1.3. parmcal ... 72

4.2. A simple example for antechamber ... 72

4.3. Programs called by antechamber ... 76

4.3.1. atomtype ... 76

4.3.2. bcc ... 76

4.3.3. bcctype .. 76

4.3.4. prepgen ... 77

4.3.5. espgen ... 78

4.3.6. respgen .. 78

Table of Contents iv

4.4. Miscellaneous programs .. 78

4.4.1. crdgrow ... 79

4.4.2. delphigen ... 79

4.4.3. parmjoin .. 79

5. Sander .. 80

5.1. Introduction. .. 80

5.2. Credits .. 81

5.3. File usage. ... 83

5.4. Example input files .. 84

5.5. Overview of the information in the input file .. 85

5.6. SECTION ONE: General minimization and dynamics parameters. 86

5.6.1. General flags describing the calculation. ... 86

5.6.2. Nature and format of the input. .. 86

5.6.3. Nature and format of the output. .. 87

5.6.4. Potential function. .. 88

5.6.5. Generalized Born/Surface Area options ... 90

5.6.6. Frozen or restrained atoms. .. 91

5.6.7. Targeted MD ... 92

5.6.8. Energy minimization. ... 93

5.6.9. Molecular dynamics. .. 93

5.6.10. Temperature regulation. ... 94

5.6.11. Pressure regulation .. 95

5.6.12. SHAKE bond length constraints. ... 96

5.6.13. Water cap. .. 97

5.6.14. NMR refinement options. .. 97

5.6.15. Particle Mesh Ewald. ... 98

5.6.16. Extra point options .. 100

5.6.17. Polarizable potentials .. 102

5.6.18. Free energies using thermodynamic integration ... 103

5.7. SECTION TWO: Weight change information. ... 106

5.8. SECTION THREE: File redirection commands. .. 111

5.9. SECTION FOUR: Distance, angle and torsional restraints. 112

5.10. SECTION FIVE: NOESY volume restraints. .. 117

5.11. SECTION SIX: Chemical shift restraints. ... 119

5.12. SECTION SEVEN: Direct dipolar coupling restraints .. 122

5.13. Overview of NMR refinement using SANDER. ... 124

5.13.1. Preparing restraint files for Sander ... 125

5.13.2. Preparing distance restraints: makeDIST_RST. .. 125

5.13.3. Preparing torsion angle restraints: makeANG_RST 128

5.13.4. Chirality restraints: makeCHIR_RST ... 130

5.13.5. NOESY volume restraints: makeVOL_RST .. 131

5.13.6. Direct dipolar coupling restraints: makeDIP_RST 131

Table of Contents v

5.13.7. Getting summaries of NMR violations ... 132

5.13.8. Time-averaged restraints. ... 132

5.13.9. Multiple copies refinement using LES ... 134

5.13.10. Some sample input files .. 134

5.14. Getting debugging information .. 141

6. LES ... 145

6.1. Background. .. 145

6.2. Preparing to use LES with AMBER .. 146

6.3. Using the ADDLES program ... 148

6.4. More information on the ADDLES commands and options 150

6.5. Using the new topology/coordinate files with SANDER .. 152

6.6. Case studies: Examples of application of LES .. 152

6.6.1. Enhanced sampling for individual functional groups: Glucose. 152

6.6.2. Enhanced sampling for a small region: Application of LES to a nucleic
acid loop .. 153

6.6.3. Improving conformational sampling in a small peptide 154

6.7. Unresolved issues with LES in AMBER ... 156

7. Gibbs .. 158

7.1. Introduction .. 158

7.2. Free Energy Techniques Available in GIBBS .. 158

7.3. Understanding the Output .. 159

7.4. Defining States and Obtaining Appropriate Starting Coordinates 160

7.5. Suggested introductory references ... 160

7.6. Assigning files ... 161

7.7. Control parameters ... 162

7.8. Choices Affecting Free Energy Calculations ... 188

7.8.1. What method should be used to calculate the free energy? 188

7.8.2. Enthalpies and entropies ... 189

7.8.3. Mixing rules for vanishing atoms ... 190

7.8.4. Using Dynamically Modified Windows ... 190

7.8.5. Potential of Mean Force (PMF) calculations .. 191

7.8.6. Error estimates and convergence .. 193

7.8.7. Changing parameters versus dual topologies .. 193

8. ptraj .. 195

8.1. ptraj command prerequisites .. 197

8.2. ptraj input/output commands ... 197

8.3. ptraj commands that modify the state .. 198

8.4. ptrajactioncommands ... 199

8.5. hydrogen bonding facility .. 207

8.6. rdparm .. 208

9. Carnal .. 214

9.1. Introduction .. 214

Table of Contents vi

9.1.1. Input .. 215

9.1.2. Output ... 215

9.2. Analin introduction .. 215

9.2.1. Summary of Analin Sections .. 215

9.2.2. A Simple Analin Example .. 215

9.3. Analin Syntax Specification .. 216

9.4. Examples .. 226

9.4.1. Simple coordinate averaging ... 226

9.4.2. Simple distance, angle, and torsion measurements .. 226

9.4.3. RMS deviation .. 227

9.4.4. Coordinate selection: waters ... 230

9.4.5. Radial distance distributions ... 231

9.4.6. Hbond examples ... 232

10. MM-PBSA ... 234

10.1. General instructions ... 234

10.2. Preparing the input file ... 235

10.3. Auxiliary programs used by MM-PBSA ... 242

11. Profec ... 243

11.1. Introduction .. 243

11.2. makeGrid ... 243

11.3. makeGrid input format ... 244

11.4. makeDiffGrid ... 245

11.5. Field ... 246

11.6. Data formats ... 247

12. Nmode.. 248

12.1. Introduction .. 248

12.2. General description .. 248

12.3. Files .. 249

12.4. Input description .. 249

12.5. quasih ... 253

12.6. nmanal .. 254

12.7. lmanal .. 257

13. Resp.. 259

14. Miscellaneous.. 263

14.1. nucgen .. 263

14.2. ambpdb .. 266

14.3. protonate .. 268

14.4. pol_h and gwh .. 270

14.5. intense .. 272

14.6. spectrum ... 274

14.7. fantasian ... 275

15. Anal .. 276

Table of Contents vii

15.1. Introduction .. 276

15.2. Files .. 276

15.3. Input description .. 276

16. Appendices... 281

16.1. Appendix A: Namelist Input Syntax ... 281

16.2. Appendix B: GROUP Specification .. 282

16.3. Appendix C: Parameter Development .. 287

16.4. Appendix D: Charge fitting philosophy .. 295

16.5. Appendix E: parameter file format .. 296

16.6. Appendix F: restart file format .. 304

16.7. Appendix G: trajectory (coordinates or velocity) file format 305

17. References.. 306

Table of Contents viii

Introduction Page 3

1. Introduction
Amberis the collective name for a suite of programs that allow users to carry out molecular

dynamics simulations, particularly on biomolecules. None of the individual programs carries this
name, but the various parts work reasonably well together, and provide a powerful framework for
many common calculations [1]. The termamberis also sometimes used to refer to the empirical
force fields that are implemented here. It should be recognized however, that the code and force
field are separate: several other computer packages have implemented theamberforce fields, and
other force fields can be implemented with theamberprograms. Further, the force fields are in
the public domain, whereas the codes are distributed under a license agreement.

Amber 7(2002) represents a significant change from the most recent previous version,
Amber 6, which was released in December, 1999. Briefly, the major differences include:

(1) Several new force fields are available for proteins and nucleic acids. These include ver-
sions with polarizable dipoles on atoms, and off-center charges (also called "extra points",
and analogous to lone pairs). Amber now provides direct support for TIP3P, TIP4P,
TIP5P, SPC/E and POL3 models of water, as well as providing models for chloroform and
other organic solvents.

(2) A new "general amber force field" that should be applicable to most organic molecules.
The automated code to prepare Amber input files using this force field is a new module,
called Antechamber. In most cases, Antechamber can directly convert three-dimensional
models into files appropriate for molecular mechanics calculations, automatically assign-
ing atom types, charges and force field parameters.

(3) Implementation of three new variants of the generalized Born (GB) code, including one
that appears to provide a better energy balance between surface-exposed and buried
atoms.

(4) More efficient PME simulations, with better performance on both single-processor and
parallel machines.

(5) Updated scripts for MM_PBSA analysis, making input easier to create and providing
more options for analysis of the results.

(6) Free energy calculations using the thermodynamic integration method can now be carried
out in sander. Many inv estigations that used to requiregibbscan now be carried out in a
simpler fashion, and free energy studies using the GB model or "extra points" force fields
(which are not supported withgibbs) can now be undertaken.

(7) New types of restraint forces can be defined that are based on RMS superpositions to ref-
erence structures. This "targeted MD" capability can be used to enhance or guide confor-
mational sampling.

1.1. What to read next
If you are installing this package or want to redimension the code, see Section 1.3. New

users should continue with this Chapter, and should consult the tutorial information in Section
1.4. Everyone should read Chapter 2, which contains information about force fields, and which is

2/28/02

Introduction Page 4

extensively revised from earlier versions of Amber There are also tips and examples on the
Amber Web pages athttp://www.amber.ucsf.edu/amber.html . Although Amber
may appear dauntingly complex at first, it has become easier to use over the past few years, and
overall is reasonably straightforward once you understand the basic architecture and option
choices. In particular, we hav e worked hard on the tutorials to make them accessible to new
users. Hundreds of people have learned to use Amber; don’t be easily discouraged.

If you want to learn more about basic biochemical simulation techniques, there are a variety
of good books to consult, ranging from introductory descriptions [2], to standard works on simu-
lation methods [3,4], to multi-author compilations that cover many important aspects of
biomolecular modelling [5-7]. Looking for "paradigm" papers that report simulations similar to
ones you may want to carry out is also generally a good idea.

Users of previous versions of Amber should be aware that most things in this version are
backwards-compatible, but there are some key changes. Among the things to be aware of are:

(1) The force field and parameter files have been completely re-organized. Even experienced
Amber users will need to read Chapter 2 on "selecting a force field." In particular, there
is no defaultleaprcfile, although you can create one if you wish.

(2) Theigb parameter insandernow has different meaning than in version 6.

(3) Kinetic energies insanderare evaluated in a slightly different way than in previous ver-
sions. This improves the (apparent) conservation of total energy. The change will have
no effect on the course of trajectories run without temperature coupling (i.e. with ntt=0);
there will be slight differences in temperature-coupled trajectories compared with earlier
versions.

(4) There is a new format forprmtopfiles that allows for systems larger than 100,000 atoms,
and which will be easier to modify for future development. All the Amber programs will
automatically detect and read either the new or old formats. For the benefit of other pro-
grams that might still expect the earlier format, such files can still be created, either
through a switch in LEaP, or by usingnew2oldparm, which acts as a pure filter, convert-
ing a "new" format file onstdinto an "old" format file onstdout.

(5) Thesander_classicprogram has been retired. You can now run non-periodic simulations
in sanderby settingntb=0.

1.2. Information flow in Amber.
Understanding where to begin in Amber is primarily a problem of managing the flow of

information in this package--see Fig. 1. You first need to understand what information is needed
by the simulation programs (gibbs, sander, roarandnmode). You need to know where it comes
from, and how it gets into the form that the energy programs need. This section is meant to orient
the new user, and is not a substitute for the individual program documentation.

Information that all the simulation programs need:

(1) Cartesian coordinates for each atom in the system. These usually come from Xray crys-
tallography, NMR spectroscopy, or model-building. They should be in Protein Databank
(PDB) format. The programLEaP provides a platform for carrying out many of these
modeling tasks, but users may wish to consider other programs as well.

(2) "Topology": connectivity, atom names, atom types, residue names, and charges. This
information comes from the database, which is found in theamber7/dat/leap/prepdirec-
tory, and is described in Chapter 2. It contains topology for the standard amino acids as

2/28/02

Introduction Page 5

pdb
antechamber,

LEaP

NMR
info

prmtop
prmcrd

sander,
gibbs,
roar

ptraj

mm-pbsa

anal,
car nal

nmode
prmtop

prmcrd

nmanal,
lmanal

Fig. 1. Basic information flow in Amber

well as N and C-terminal charged amino acids, DNA, and RNA. The database contains
default internal coordinates for these monomer units, but coordinate information is usu-
ally obtained from PDB files. Topology information for other molecules (not found in the
standard database) is kept in user-generated "residue files", which are generally created
usingantechamber.

(3) Force field: Parameters for all of the bonds, angles, dihedrals, and atom types in the sys-
tem. The standard parameters for several force fields are found in the
amber7/dat/leap/parmdirectory; consult Chapter 2 for more information. These files
may be used "as is" for proteins and nucleic acids, or users may prepare their own files
that contain modifications to the standard force fields.

(4) Commands: The user specifies the procedural options and state parameters desired.
These are specified in the input files (usually calledmdin) to the sander, gibbs, or nmode
programs.

1.2.1. Preparatory programs

LEaP is the primary program to create a new system in Amber, or to modify old sys-
tems. It combines the functionality ofprep, link, edit, andparm from
earlier versions.

2/28/02

Introduction Page 6

ANTECHAMBER
This is the main program from the Antechamber suite. If your system contains
more than just standard nucleic acids or proteins, this may help you prepare the
input for LEaP.

1.2.2. Simulation programs

SANDER is the basic energy minimizer and molecular dynamics program. This program
relaxes the structure by iteratively moving the atoms down the energy gradient
until a sufficiently low average gradient is obtained. The molecular dynamics
portion generates configurations of the system by integrating Newtonian equa-
tions of motion. MD will sample more configurational space than minimization,
and will allow the structure to cross over small potential energy barriers. Config-
urations may be saved at regular intervals during the simulation for later analysis,
and basic free energy calculations using thermodynamic intergration may be car-
ried out.

More elaborate conformational searching and modeling MD studies can also be
carried out using the SANDER module. This allows a variety of constraints to be
added to the basic force field, and has been designed especially for the types of
calculations involved in NMR structure refinement.

GIBBS is the free energy perturbation program. It is similar to SANDER, but uses the
ensemble of generated configurations to calculate the free energy difference
between two similar states through either a perturbation or thermodynamic inte-
gration approach. The two states are defined by the user in LEaP.

NMODE is both a quasi-Newton Raphson second derivative energy minimizer and vibra-
tional analysis program. NMODE can calculate the normal modes of the system
as well as numerous thermochemical properties. Other features include the abil-
ity to compute "Langevin modes" (normal modes including viscous coupling to a
continuum solvent,) techniques to find transitions states as well as minima, and
programs to generate "quasiharmonic" modes (sometimes called Principal Com-
ponent Analysis) from MD trajectories.

RO AR is a "Penn State" version of sander, that incoporates a variety of features not
found in sander itself. The most notable change is the incorporation of the ability
to define a part of the system quantum-mechanically, allowing it to interact with
other parts of the system that are defined in a molecular mechanics sense. Other
features of ROAR include implementation of a Nose-Hoover-chain MD integra-
tor, Ewald summations, and multiple-time-scale integration routines.

1.2.3. Analysis programs

ANAL is for the analysis of structure and especially molecular mechanical energy of a
single configuration of a system. It can be run on structures both before and
after modification by the energy programs. Running ANAL on the initial config-
uration of your system is a good way to locate errors in the structure that result in
large energies.

2/28/02

Introduction Page 7

PTRAJ is a general purpose utility for analyzing and processing trajectory or coordinate
files created from MD simulations (or from various other sources), carrying out
superpositions, extractions of coordinates, calculation of bond/angle/dihedral val-
ues, atomic positional fluctuations, correlation functions, analysis of hydrogen
bonds, etc. The same executable, when named rdparm (from which the program
ev olved), can examine and modify prmtop files.

CARNAL is a second molecular dynamics analysis package, with an interface and some
features that complement those inptraj.

NMANAL/LMANAL
computes atomic fluctuations and various correlation functions from normal or
quasiharmonic modes.

MM-PBSA is a script that automates energy analysis of snapshots from a molecular dynam-
ics simulation using ideas generated from continuum solvent models.

1.3. Installation of Amber 7
To compile the basic AMBER distribution, do the following:

(1) Set up the $AMBERHOME environment variable to point to where the Amber tree
resides on your machine. For example

Using csh, tcsh, etc: setenv AMBERHOME /usr/local/amber7

Using bash, sh, zsh, etc: set AMBERHOME=/usr/local/amber7

export AMBERHOME

NOTE: Be sure to replace the "/usr/local" part above with whatever path is appropriate
for your machine. You will probably want to place$AMBERHOME/exein your PATH.

(2) Go to the$AMBERHOME/srcdirectory, and create a link to the appropriate Machine file,
e.g.

ln -s -f Machines/Machine.g77 MACHINE for Linux with g77 compiler

ln -s -f Machines/Machine.sgi_nopar MACHINE for single-CPU SGI, etc

To compile sander for SGI parallel machines, you will need to use Machine.sgi_mpi (for
SGI’s mpi libraries) or Machine.sgi_mpich (if you have installed MPICH). For most
Intel/Linux distributions, you can use Machine.g77 for a single processor version, or
Machine.g77_mpich for multiple processors (again, assuming you have MPICH
installed.) If you have purchased commerical compilers for Linux, you might want to
look at Machine.pgf77 (for the Portland Group compiler), Machine.absoft (for the Absoft
Fortran compiler), or Machine.ifc (for the Intel Fortran compiler). Use these as a tem-
plate if you have some other compiler. If you have an Alpha/Linux machine, try
Machine.axp_linux.

(3) Now compile everything:

make install

2/28/02

Installation Page 8

Loader warnings (especially on SGI -- see the Machine.sgi file) can generally be ignored;
compiler warnings should be considered, but most are innocuous. If a program that you
don’t need initially fails to compile, you should consider commenting out that line in the
Makefile , and seeing if the rest of the suite can be compiled correctly.

(4) In order to use thecm2, mul,or bcccharge options inantechamber, you will need to have
a version of MOPAC installed on your machine. There are many places to get this; a ver-
sion that supports the CM2 charge model can be obtained from
http://comp.chem.umn.edu/mopac/. You will then need to edit $AMBER-
HOME/exe/mopac.shto point to the correct location of MOPAC. The syntax should be
"mopac_program input_file output_file"; depending on which version of mopac you have,
you may need to remove the "<" and ">" symbols in themopac.shfile we provide by
default. (Obviously, if you don’t plan to useantechamberwith these charge options, you
don’t need to do this step!)Note:, the version of MOPAC distributed at the above web site
is dimensioned by default for only 15 heavy atoms; you will probably want to increase the
dimensions in theSIZES.i file before compiling this.

(5) For reasons we don’t understand, some MPI implementations require a null file for stdin,
ev en though sander doesn’t take any input from there. This is true for some SGI and HP
machines. If you have troubles getting going, try the following:

mpirun -np <num-proc> sander [options] < /dev/null

(6) To test the basic AMBER distribution, type "make test.<program-name>" in the
$AMBERHOME/test directory. Currently, <program-name> can be one of the follow-
ing: leap, sander, gibbs, anal, nmode, resp, antechamber. To test parallel programs, you
need first to set the DO_PARALLEL environment variable as follows:

setenv DO_PARALLEL ’mpirun -np 4’

The number is the number of processors; if your command to run MPI jobs is something
different thanmpirun (e.g. it is dmpirun on Tru64 Unix systems), use the command
appropriate for your machine.

Where "possible FAILURE" messages are found, go to the indicated directory under
$AMBERHOME/test, and look at the *.dif files. Differences should involve round-off in
the final digit printed, or occasional messages that differ from machine to machine (see
below for details). As with compilation, if you have trouble with individual tests, you
may wish to comment out certain lines in the Makefile, and/or go directly to the
$AMBERHOME/test subdirectories to examine the inputs and outputs in detail.

1.3.1. More information on parallel machines or clusters
This section contains notes about the various parallel implementations supplied in the cur-

rent release. Onlysander, gibbsand roar are parallel programs; all others are single threaded.
For information on parallel roar, see its documentation. NOTE: Parallel machines and networks
fail in unexpected ways. PLEASE check short parallel runs against a single-processor version of
Amber before embarking on long parallel simulations!

This release supports both shared memory (fortran directives) and message passing (MPI)
code for sander and gibbs for particular architectures.

2/28/02

Installation Page 9

Shared memory: (for gibbs)

All SGI multiprocessors

Cray Unicos multiprocessors running Unicos

Message passing environments: (MPI, for sander and gibbs)

(Presumably) any MPI-compliant parallel environment; we have

tested the following:

SGI with MPICH library

SGI with vendor-supplied MPI library

Cray T3D/E using SHMEM wrappers to intercept MPI calls

Cray T3E with Cray-supplied MPT library

IBM POE MPL (SP1/SP2)

Linux clusters with various MPI libraries, including MPICH

HP clusters

1.3.1.1. Shared memory version
The shared memory version was originally developed by Roberto Gomperts and Michael

Schlenkrich of SGI, with the assistance of Thomas Cheatham, specifically for Silicon Graphics
multiprocessors. The SGI shared memory version was ported to Cray multiprocessors by Jeya-
pandian Kottalam and Mike Page of Cray Research and incorporated into the 4.1 distribution by
Thomas Cheatham. In Amber 7, the shared memory option only applies togibbs.

Currently the code has only been ported to SGI and Cray multiprocessors. Multitasking is
handled via the placement of FORTRAN parallel directives in the source which multitask over
loops or parallel regions. Scratch memory is allocated on an as-needed basis using SGI and Cray
specific FORTRAN calls to allocate memory.

In general, the shared memory source code is all wrapped with the CPP wrapper:

#ifdef SHARED_MEMORY

...general shared memory code...

ifdef SGI_MP

...SGI specific code...

endif

ifdef CRAY_MP

...Cray specific code...

endif

#endif

Specification of either -DSGI_MP or -DCRAY_MP in the MACHINEFLAGS of the MACHINE

2/28/02

Installation Page 10

file leads to auto-setting of the #define SHARED_MEMORY in the code. [Note that specifying
-DSHARED_MEMORY alone in the MACHINEFLAGS will not lead to a correctly compiled
source.]

Beware that some of the shared memory source is placed in extra files which are included
when the appropriate #define’s are specified. This is to minimize obfuscation of the source where
possible. In particular, this is apparent in force.f (#include forcemp.f) and resnba.f (#include
resnbamp.f).

In addition to setting either -DSGI_MP or -DCRAY_MP in the MACHINEFLAGS, option-
ally one can specify the maximum number of processors for a given executable (which deter-
mines allocation of scratch memory) to be compiled in by adding the following define to the
MACHINEFLAGS:

-DSHARED_MEMORY_MAX_PROCESSORS=N

where N is the maximum number of processors to run on. If this is not set, it will default to the
current maximum size for a given machine based on default values set in sander.f (sander) and
gib.f (gibbs) and in various other routines.

To set the number of processors to run on, set the MP_SET_NUMTHREADS environment
variable at runtime. E.g. to run on 4 processors:

setenv MP_SET_NUMTHREADS 4

1.3.1.2. MPI version
This message passing version was initially developed by James Vincent and Ken Merz,

based on 4.0 and later an early prerelease 4.1 version [8]. This version was optimized, integrated
and extended by James Vincent, Dave Case, Thomas Cheatham, and Mike Crowley, with input
from Thomas Huber, Asiri Nanyakkar, and Nathalie Godbout.

The bonds, angles, dihedrals, SHAKE (only on bonds involving hydrogen) , nonbonded
energies and forces, pairlist creation, and integration steps are parallelized. The code is pure
SPMD (single program multiple data) using a master/slave, replicated data model. Basically, the
master node does all of the initial set-up and performs all the I/O. Depending on the version
and/or what particular input options are chosen, either all the non-master nodes executeforce() in
parallel, or all nodes do dynamics (runmd(),more optimal) in parallel. Communication is done to
accumulate partial forces, update coordinates, etc.

The MPI source code is generally wrapped with the CPP wrapper:

#ifdef MPI

...parallel sections with calls to MPI library routines...

#endif

If you plan on running with an MPI version and there is no pre-made MACHINE file (these files
end in "_mpi" in the src/Machines directory) then you will need to modify the Machine file as fol-
lows:

2/28/02

Installation Page 11

(1) add "-DMPI " to the MACHINEFLAGS variable.

(2) add the path for include file for the (implementation supplied)

mpif.h file to the MACHINEFLAGS variable; for example:

setenv MACHINEFLAGS "-DMPI -I/usr/local/src/mpi/include"

(3) Reference any necessary MPI libraries in the LOADLIB variable.

(4) Add any special compile and load flags to the L0, L1, L2,

L3, and LOAD variables.

To run the resulting codes, you need to use the "mpirun" (or equivalent) command for your
system. The naming and syntax of this is unfortunately not well standardized: on the T3E it is
called "mpprun"; on DEC OS/1 machines it is called "dmpirun"; etc. Consult your MPI docu-
mentation.

For the test suites, you need to set the DO_PARALLEL environment variable to include
mpirun or its equivalent, e.g.:

setenv DO_PARALLEL ’mpirun -np 4’

will run the test cases with four processors.

1.3.2. Installing on Windows
Most of Amber (including the X-windows parts) will compile and run on Windows using

the Cygwin development tools, but doing this requires some knowledge of Unix-style software
development tools. You should first have familiarity with Amber on a Unix/Linux system, and
then treat porting the parts you need to the new environment as you would port any other Unix-
based software to the Cygwin environment. Note that, although tests seem to perform correctly
for us, this platform hasnothad extensive testing, and may have unidentified limitations.

Note that the executables constructed in this way require the cygwin dll to run, so that you
will have to install the cygwin tools on every machine on which you wish to run Amber. Note
also that there are restrictions on distributing programs that link to the cygwin libraries. (See the
cygwin Web site for details.) The basic upshot is that we cannot supply pre-compiled Windows
binaries created by this mechanism: you will need to compile things yourself. UseMachine.g77
as your MACHINE file, and editamber7/src/sfx.hto set$SFX=.exe .

1.3.3. Testing.
We hav e installed and tested AMBER 7 on a number of machines, using UNIX machines

from IBM, Sun, Hewlett-Packard, DEC(Compaq), and Silicon Graphics, and on Red Hat Linux
and Windows 95/98/NT/2000 (running on Intel Pentium machines). However, owing to time and
access limitations, not all combinations of code, compilers, and operating systems have been
tested. Therefore we recommend running the test suites.

The distribution contains a validation suite that can be used to help verify correctness. The
nature of molecular dynamics, is such that the course of the calculation is very dependent on the
order of arithmetical operations and the machine arithmetic implementation,i.e. the method used

2/28/02

Installation Page 12

for roundoff. Because each step of the calculation depends on the results of the previous step,
the slightest difference will eventually lead to a divergence in trajectories. As an initially identi-
cal dynamics run progresses on two different machines, the trajectories will eventually become
completely uncorrelated. Neither of them are "wrong;" they are just exploring different regions of
phase space. Hence, states at the end of long simulations are not very useful for verifying correct-
ness. Averages are meaningful, provided that normal statistical fluctuations are taken into
account. "Different machines" in this context means any difference in floating point hardware,
word size, or rounding modes, as well as any differences in compilers or libraries. Differences in
the order of arithmetic operations will affect roundoff behavior; (a + b) + c is not necessarily the
same as a + (b + c). Different optimization levels will among other things affect operation order,
and may therefore affect the course of the calculations.

All initial values reported as integers should be identical. The energies and temperatures on
the first cycle should be identical. The RMS and MAX gradients reported in sander are often
more precision sensitive than the energies, and may vary by 1 in the last figure on some machines.
As is the case with sander, the trajectory in a Gibbs simulation will diverge, but the resulting free
energy should not if the simulation is run to convergence (this is not done because of the time
involved). In minimization and dynamics calculations, it is not unusual to see small divergences
in behavior after as little as 100-200 cycles.

In general, compiler and optimizer errors are fairly obvious, and result in rather large
changes in the output, if you get any output at all. Seetest/0README for examples of accept-
able output differences and discussion of peculiarities of various machines.

1.3.4. Memory Requirements.
The AMBER 7 programs as distributed are dimensioned for a medium-sized system (about

30,000 atoms), and you may want to change their dimensions to be more appropriate for the
machine you are using, especially if you are running in a tight memory environment. In
src/sander/sizes.h , you will find parameters that might need to be changed. Instructions
for choosing appropriate sizes are given in that file. Make the required changes, then recompile.
Note that some sizes related to NMR refinements are defined innmr.h . In sander, the
MEM_ALLOC flag can be turned on during compilation; this for the most part (but not com-
pletely) relieves the user of concerns about memory allocation.

If you get a "Segmentation fault" immediately upon starting a program (particularly if this
happens with no arguments), you may not have enough memory to run the program. The Unix
"size" command will show you the size of the executable; if this is comparable to are larger than
your machine’s memory, you may need to re-compile with smaller sizes. Generally, all of the test
cases should run (using the default sizes) on a machine with 128 Mbytes of memory, but probably
not on anything much smaller.

1.4. Basic tutorials
AMBER is a suite of programs for use in molecular modeling and molecular simulations. It

consists of a substructure database, a force field parameter file, and a variety of useful programs.
Here we give some commented sample runs to provide an overview of how things are carried out.
The examples only cover a fraction of the things that it is possible to do with AMBER. The for-
mats of the example files shown are described in detail later in the manual, in the chapters per-
taining to the programs.

2/28/02

Tutorial Page 13

Additional tutorial examples are available on athttp://www.amber.ucsf.edu/amber/. Because
the web can provide a richer interface than one can get on the printed page (with screen shots,
links to the actual input and output files, etc.), most of our recent efforts have been devoted to
updating the tutorials on the web site. In particular, new users are adivsed to look at the follow-
ing, which can be found at both at the web site listed above, and on the distribution CD, under
amber7/tutorial:

DNA Basic introduction toLEaP, sander, carnal and
ptraj, to build, solvate, run MD and analyze tra-
jectories.

Plastocyanin/ion/water Basic tutorial for a protein, introducing non-
standard residues, NMR restraints, and more
complex modeling tasks.

NMR refinement of DNA Basic introduction to NMR refinement using
LEaP and sander

GB simulation Carrying out a protein simulation using the gen-
eralized Born continuum solvent model.

streptavidin/biotin Illustrates a ligand-protein binding simulation,
using a non-periodic "cap" of waters to hydrate
just the active site.

methane/water A small molecule calculation, illustrating free
energy perturbation on methane in a box of wa-
ter.

We are in the process of creating additional tutorials; because of the lead time needed to print this
manual, there may be new tutorials available, either inamber7/tutorialon at the web site listed
above. You should also look at the sample inputs in the chapters devoted to each program, espe-
cially for LEaP and sander.

As a basic example, we consider here the minimzation of a protein in a simple solvent
model. The procedure consists of three steps:

Step 1. Generate some starting coordinates.

The first step is to obtain starting coordinates. We begin with the bovine pancreatic trypsin
inhibitor, and consider the file6pti.pdb, exactly as distributed by the Protein Data Bank. This file
(as with most PDB files) needs some editing before it can be used by Amber. First, alternate con-
formations are provided for residue 50, so we need to figure out which one we want. For this
example, we choose the "A" conformation, and manually edit the file to remove the alternate con-
formers. Second, coordinates are provided for a phosphate group and a variety of water
molecules. These are not needed for the calculation we are pursuing here, so we also edit the file
to remove these. Third, the cysteine residues are involved in disulfide bonds, and again need to
have their residue names changed in an editor from CYS to CYX to reflect this. Let’s call this
modified file6pti.mod.pdb.

2/28/02

Tutorial Page 14

Although Amber tries hard to understand pdb-format files, it is typical to have to do some
manual editing before proceeding. A general prescription is: "keep running theloadPdbstep in
LEaP (see step 2, below), and editing the pdb file, until there are no error messages."

Step 2. Run LEaP to generate the parameter and topology file.

This is a fairly straightforward exercise in loading in the pdb file, adding the disulfide cross
links, and saving the resulting files. Type the following command should work in eithertleapor
xleap:

bpti = loadPdb 6pti.mod.pdb

bond bpti.5.SG bpti.55.SG

bond bpti.14.SG bpti.38.SG

bond bpti.30.SG bpti.51.SG

saveAmberParm bpti prmtop prmcrd

quit

Step 3. Perform some minimization.

Use this script:

Running minimization for BPTI

cat << eof > min.in
200 steps of minimization, generalized Born solvent model

&cntrl
maxcyc=200, imin=1, cut=12.0, igb=1, ntb=0, ntpr=10,

&end
eof
sander -i min.in -o 6pti.min1.out -c prmcrd -r 6pti.min1.xyz
/bin/rm min.in

This will perform minimization (imin) for 200 steps (maxcyc), using a nonbonded cutoff
of 12 Å (cut) and a generalized Born solvent model (igb=1); intermediate results will be
printed every 10 steps (ntpr). Text output will go to file6pti.min1.out, and the final coordinates
to file 6pti.min1.xyz. The "out" file is intended to be read by humans, and gives a summary of the
input paramters and a history of the progress of the minimization.

Of course, Amber can do much more than the above minimization, and the tutorials in
amber7/tutorialshould be consulted to go further.

2/28/02

Force fields Page 15

2. Specifying a force field
Amber is designed to work with several simple types of force field, although it is most com-

monly used with parameterizations developed by Peter Kollman and his co-workers. One signifi-
cant recent development is that there are now a variety of such parameterizations, with no obvious
"default" value. The "traditional" parameterization uses fixed partial charges, centered on atoms.
Examples of this areff86, ff94, ff96, ff98and ff99 (described below). The default in versions 5
and 6 of Amber wasff94; a comparable default now would probably beff99, but users should con-
sult the papers listed below to see a detailed discussion of the changes made.

Less extensively used, but very promising, recent modifications add polarizable dipoles to
atoms, so that the charge description depends upon the environment; such potentials are called
"polarizable" or "non-additive". Examples areff02 and ff02EP: the former has atom-based
charges (as in the traditional parameterization), and the latter adds in off-center charges (or "extra
points"), primarily to help describe better the angular dependence of hydrogen bonds. Again,
users should consult the papers cited below to see details of how these new force fields have been
developed.

In order to tell LEaP which force field is being used, the four types of information described
below need to be provided. This is generally accomplished by selecting an appropriateleaprc
file, which loads the information needed for a specific force field. (See section 2.2, below).

(1) A listing of the atom types, what elements they correspond to, and their hybridizations.
This information is encoded as a set of LEaP commands, and is normally read from a
leaprcfile.

(2) Residue descriptions (or "topologies") that describe the chemical nature of amino acids,
nucleotides, and so on. These files specify the connectivities, atom types, charges, and
other information. These files have a "prep" format (a now-obsolete part of Amber) and
have a ".in" extension. Standard libraries of residue descriptions are in the
amber7/dat/leap/prepdirectory. Theantechamberprogram may be used to generate prep
files for other organic molecules.

(3) Parameter files give force constants, equilibrium bond lengths and angles, Lennard-Jones
parameters, and the like. Standard files have a ".dat" extension, and are found in
amber6/dat/leap/parm.

(4) Extensions or changes to the parameters can be included infrcmodfiles. The expectation
is that the user will load a large, "standard" parameter file, and (if needed) a smaller frc-
mod file that keeps track of any changes to the default parameters that are needed. The
frcmodfiles for changing the default water model (which is TIP3P) into other water mod-
els are in files likeamber7/dat/leap/parm/frcmod.tip4p. The parmchkprogram (part of
Antechamber) can also generatefrcmodfiles.

2.1. Description of the database files
The following files are in theamber7/dat/leapdirectory. Files with a ".in" extension are in

the prep subdirectory, those with a ".dat" extension are in theparm subdirectory, as are the "frc-
mod" files.

Amber 1999 and 2002 force fields

parm99.dat Force field, for amino acids and some organic molecules;

can be used with either additive or

2/28/02

Force fields Page 16

non-additive treatment of electrostatics

parm99EP.dat Like parm99.dat, but with "extra-points": off-center

atomic charges, somewhat like lone-pairs

gaff.dat Newer (and still experimental) force field for quite

general organic molecules.

all_nuc02.in Nucleic acid input for building database, for a non-

additive (polarizable) force field without extra points.

all_amino02.in Amino acid input ...

all_aminoct02.in COO- amino acid input ...

all_aminont02.in NH3+ amino acid input

all_nuc02EP.in Nucleic acid input for building database, for a non-

additive (polarizable) force field with extra points.

all_amino02EP.in Amino acid input ...

all_aminoct02EP.in COO- amino acid input ...

all_aminont02EP.in NH3+ amino acid input

Amber 1994 (Cornell et al.) force field

all_nuc94.in Nucleic acid input for building database.

all_amino94.in Amino acid input for building database.

all_aminoct94.in COO- amino acid input for database.

all_aminont94.in NH3+ amino acid input for database.

nacl.in Ion file

parm94.dat 1994 force field file.

parm96.dat modified version of 1994 force field, for proteins

parm98.dat modified version of 1994 force field, for nucleic acids

Amber 1984, 1986 (Weiner et al.) force fields

all.in All atom database input.

allct.in All atom database input, COO- Amino acids.

allnt.in All atom database input, NH3+ Amino acids.

uni.in United atom database input.

unict.in United atom database input, COO- Amino acids.

unint.in United atom database input, NH3+ Amino acids.

parm91X.dat Parameters for 1984, 1986 force fields

Solvent models:

water.in topology definition for several water models

meoh.in topology file for methanol

chcl3.in topology file for chloroform

nma.in topology file for N-methylacetamide

frcmod.tip4p parameter changes from TIP3P -> TIP4P

frcmod.tip5p parameter changes from TIP3P -> TIP5P

frcmod.spce parameter changes from TIP3P -> SPC/E

frcmod.pol3 parameter changes from TIP3P -> POL3

frcmod.meoh paramters for methanol

frcmod.chcl3 paramters for chloroform

2/28/02

Force fields Page 17

frcmod.nma paramters for N-methyacetamide

Miscellaneous:

nucgen.dat Nucgen nucleic acid conformations.

PROTON_INFO* Files needed for protonate

map.DG-AMBER needed for NMR input generation.

2.2. Specifying which force field you want in LEaP
Various combinations of the above files make sense, and we have moved to an "ff" (force

field) nomenclature to identify these; examples would then beff94 (which was the default in
Amber 5 and 6),ff99, etc. The most straightforward way to specify which force field you want is
to use one of theleaprcfiles in$AMBERHOME/dat/leap/cmd. The sytax is:

xleap -s -f <filename>

Here, the-s flag tells LEaP to ignore anyleaprc file it might find, and the-f flag tells it to start
with commands for some other file. Here are the combinations we support and recommend:

How to specify force fields in LEaP
filename topology parameters

leaprc.ff86 Weineret al.1986 parm91X.dat
leaprc.ff94 Cornellet al.1994 parm94.dat
leaprc.ff96 " parm96.dat
leaprc.ff98 " parm98.dat
leaprc.ff99 " parm99.dat
leaprc.ff02 reduced (polarizable) charges parm99.dat
leaprc.ff02EP " + extra points parm99EP.dat
leaprc.gaff none gaff.dat

Notes:

(1) Unlike previous versions of Amber,there is no default leaprc fileanymore. If you make a
link from one of the files above to afile namedleaprc , then that will become the
default. For example:

cd $AMBERHOME/dat/leap/cmd

ln -s leaprc.ff99 leaprc

will provide a good default for many users; after this you could just invoketleap or
xleap without any arguments, and it would automatically load theff99 force field. If
you put leaprc.ff94in the above link command, you would be making the Cornellet al.
force field the default, which was the behavior of versions 5 and 6 of Amber. Note also
that aleaprcfile in the current directory overrides any other such files that might be pre-
sent in the search path.

2/28/02

Force fields Page 18

(2) The first five choices in the above table are for additive (non-polarizable) simulations; you
should use saveAmberParm (or saveAmberParmPert) to save theprmtopfile, and keep the
defaultipol=0 in sander or gibbs.

(3) The ff02 entries in the above table are for non-additive (polarizable) force fields. Use
saveAmberParmPol to save theprmtopfile, and setipol=1 in the sander or gibbs input
file. Note that POL3 is a polarizable water model, so you need to use saveAmberParmPol
for it as well.

(4) The files above assume that nucleic acids are DNA, if not explicitly specified. Use the
files leaprc.rna.ff98, leaprc.rna.ff99, leaprc.rna.ff02or leaprc.rna.ff00EPto make the
default RNA. If you have mixture of DNA and RNA, you will need to edit your PDB file,
or use theloadPdbUsingSequence command in LEaP (see that chapter) in order to
specify which nucelotide is which.

(5) There is also aleaprc.gafffile, which sets you up for the "general" Amber force field.
This is primarily for use with Antechamber (see that chapter), and does not load any
topology files.

(6) The leaprc.ff86files gives the 1986 all-atom parameters; Amber no longer directly sup-
ports the 1984 united atom parameter set.

(7) Our experience with generalized Born simulations is all withff94 or ff99; the current GB
models are not compatible with polarizable force fields. The GB optionsigb=3 or 4 (see
Chapter 5) were derived for use withff94. Replacing explicit water with a GB model is
equivalent to specifying a different force field, and users should be aware that none of the
GB options (in Amber or elsewhere) is as "mature" as simulations with explicit solvent;
user discretion is advised!

2.3. 1999 and 2002 force fields
The ff99 force field [9] represents a new direction for Amber-related force fields, pointing

towards "general" organic and bioorganic systems. The atom types are mostly those of Cornellet
al. (see below), but changes have been made in many torsional parameters, and this parameteriza-
tion supports both additive and non-additive (polarizable) force fields. The topology and coordi-
nate files for the small molecule test cases used in the development of this force field are in the
parm99_libsubdirectory. Theff99 force field uses these parameters, along with the topologies
and charges from the Cornellet al. force field, to create an all-atom nonpolarizable force field for
proteins and nucleic acids. This is probably the best "general purpose" force field included here
for biomolecules.

The ff02 force field is a polarizable variant offf99. Here, the charges were determined at
the B3LYP/cc-pVTZ//HF/6-31g* level, and hence are more like "gas-phase" charges. During
charge fitting the correction for intramolecular self polarization has been included [10]. Bond
polarization arising from interactions with a condensed phase environment are achieved through
polarizable dipoles attached to the atoms. These are determined from isotropic atomic polariz-
abilities assigned to each atom, taken from experimental work of Applequist. The dipoles can
either be determined at each step through an iterative scheme, or can be treated as additional
dynamical variables, and propagated through dynamics along with the atomic positions, in a man-
ner analogous Car-Parinello dynamics. Derivation of the polarizable force field required only
minor changes in dihedral terms and a few modification of the van der Waals parameters.

The user also has a choice to use the polarizable force field with extra points on which addi-
tional point charges are located; this is calledff02EP. The additional points are located on

2/28/02

Force fields Page 19

electron donating atoms (e.g. O,N,S), which mimic the presence of electron lone pairs [11]. For
nucleic acids we chose to use extra interacting points only on nucleic acid bases and not on sugars
or phosphate groups.

There is not (yet) a full published description of this, but a good deal of preliminary work
on small molecules is available [10,12]. Beyond small molecules, our intial tests have focussed
on small proteins and double helical oligonucleotides, in additive TIP3P water solution. Such a
simulation model, (using a polarizable solute in a non-polarizable solvent) gains some of the
advantages of polarization at only a small extra cost, compared to a standard force field model. In
particular, the polarizable force field appears better suited to reproduce intermolecular interac-
tions and directionality of H-bonding in biological systems than the additive force field. Initial
tests showff02EP behaves slightly better thanff02, but it is not yet clear how significant or
widespread these differences will be.

The gaff.dat ("general Amber force field") is yet a further step towards general purpose
organic molecules. It is primarily used in conjunction with theantechamberprogram, and users
should consult that chapter for more information. A paper describing these parameters is being
prepared for publication.

2.4. The Cornell et al. (1994) force field
Contained inff94 are parameters from the so-called "second generation" force field devel-

oped in the Kollman group in the early 1990’s [13]. These parameters are especially derived for
solvated systems, and when used with an appropriate 1-4 electrostatic scale factor, hav e been
shown to perform well at modelling many org anic molecules. The parameters inparm94.datomit
the hydrogen bonding terms of earlier force fields. This is an all-atom force field; no united-atom
counterpart is provided. 1-4 electrostatic interactions are scaled by 1.2 instead of the value of 2.0
that had been used in earlier force fields.

Charges were derived using Hartree-Fock theory with the 6-31G* basis set, because this
exaggerates the dipole moment of most residues by 10-20%. It thus "builds in" the amount of
polarization which would be expected in aqueous solution. This is necessary for carrying out
condensed phase simulations with an effective two-body force field which does not include
explicit polarization. The charge-fitting procedure is described in Appendix D.

The ff96 force field [14] differs fromparm94.datin that the torsions forφ andψ have been
modified in response toab initio calculations [15] which showed that the energy difference
between conformations were quite different than calculated by Cornellet al. (usingparm94.dat).
To create parm96.dat, common V1 and V2 parameters were used forφ andψ , which were empiri-

cally adjusted to reproduce the energy difference between extended and constrained alpha helical
energies for the alanine tetrapeptide. This led to a significant improvement between molecular
mechanical and quantum mechanical relative energies for the remaining members of the set of
tetrapeptides studied by Beachyet al. Users should be aware thatparm96.dathas not been as
extensively used asparm94.dat, and that it almost certainly has its own biases and idiosyncracies
[16,17].

The ff98 force field [18] differs fromparm94.datin torsion angle parameters involving the
glycosidic torsion in nucleic acids. These serve to improve the predicted helical repeat and sugar
pucker profiles.

2/28/02

Force fields Page 20

2.5. The Weiner et al. (1984,1986) force fields
The ff86 parameters are described in early papers from the Kollman and Case groups

[19,20]. [The "parm91" designation is somewhat unfortunate: this file is really only a corrected
version of the paramters described in the 1984 and 1986 papers listed above.] These parameters
are not generally recommended any more, but may still be useful for vacuum simulations of
nucleic acids and proteins using a distance-dependent dielectric, or for comparisons to earlier
work. The material inparm91X.datis the parameter set distributed with Amber 4.0. TheSTUB
nonbonded set has been copied fromparmuni.dat; these sets of parameters are appropriate for
united atom calculations using the "larger" carbon radii referred to in the "note added in proof" of
the 1984 JACS paper. If these values are used for a united atom calculation, the parameterscnb
should be set to 8.0; for all-atom calculations use 2.0. Thesceeparameter should be set to 2.0 for
both united atom and all-atom variants.Note that the default value for scee is sander is now 1.2
(the value for 1994 and later force fields; users must explicitly change this in their inputs for the
earlier force fields.

A number of terms in the non-bonded list of parm91X.dat should be noted. The non-
bonded terms for I(iodine),CU(copper) and MG(magnesium) have not been carefully calibrated,
but are given as approximate values. In the STUB set of non-bonded parameters, we have
included parameters for a large hydrated monovalent cation (IP) that represent work by Singh et
al 1985 on large hydrated counterions for DNA. Similar values are included for a hydrated anion
(IM).

The non-bonded potentials for hydrogen-bond pairs inff86 uses a Lennard-Jones 10-12
potential. If you want to runsander with ff86, you will need to recompile, adding the
-DHAS_10_12 flag to your MACHINE file.

2.6. Ions
For alkali ions with TIP3P waters, we have provided the values of A° qvist [21], which are

adjusted for Amber’s nonbonded atom pair combining rules to give the same ion-OW potentials
as in the original (which were designed for SPC water); these values reproduce the first peak of
the radial distribution for ion-OW and the relative free energies of solvation in water of the vari-
ous ions. Note that these values would have to be changed if a water model other than TIP3P
were to be used. These potentials may also need modification if absolute free energies of solva-
tion are important [22].

2.7. Solvent models
Amber now provides direct support for several water models. The default water model is

TIP3P [23]. This model will be used for residues with names HOH or WAT . If you want to use
other water models, execute the following leap commands after loading your leaprc file:

WAT = PL3 (residues named WAT in pdb file will be POL3)

loadAmberParams frcmod.pol3 (sets the HW,OW parameters to POL3)

(The above is obviously for the POL3 model.) Thewater.lib file contains TIP3P [23], TIP4P
[23,24], TIP5P [25], POL3 [26] and SPC/E [27] models for water; these are called TP3, T4P, T5P,
PL3 and SPC, respectively. By default, the residue name in theprmtopfile will be WAT , regard-
less of which water model is used. If you want to change this (in order to keep track of which
water model you are using, say), you can change the residue name to whatever you like. For
example,

2/28/02

Force fields Page 21

WAT = TP4

set WAT.1 name "TP4"

would make a special label in PDB andprtmopfiles for TIP4P water. Note that Brookhaven for-
mat files allow at most three characters for the residue label.

In addition, non-polarizable models for the organic solvents methanol, chloroform and N-
methylacetamide are provided. The input files for a single molecule are inamber7/dat/leap/prep,
and the corresponding frcmod files are inamber7/dat/leap/parm. Pre-equlibrated boxes are in
amber7/dat/leap/lib. For example, to solvate a simple peptide in methanol, you could do the fol-
lowing:

source leaprc.ff99 (get a standard force field)

loadAmberParams frcmod.meoh (get methanol parameters)

peptide = sequence { ACE VAL NME } (construct a simple peptide)

solvateBox peptide MEOHBOX 12.0 0.8 (solvate the peptide with meoh)

saveAmberParm peptide prmtop prmcrd

quit

Similar commands will work for other solvent models.

2/28/02

LEaP Introduction Page 22

3. LEaP

3.1. Introduction
LEaP is the generic name given to the programs teLeap and xaLeap, which are generally

run via the tleap and xleap shell scripts. These two programs share a common command lan-
guage but the xleap program has been enhanced through the addition of an X-windows graphical
interface. The name LEaP is an acronym constructed from the names of the older AMBER soft-
ware modules it replaces: link, edit, and parm. Thus, LEaP can be used to prepare input for the
AMBER molecular mechanics programs.

Both tleapandxleapare written in ANSI C; the former does not support graphics and there-
fore, it will run in a text window or from a script. Thexleap script is meant to run on any
machine that supports X-windows (Version 11 Revision 4 and latter versions); it does all of its
graphics manipulations in generic X-windows. It does not depend on any system-dependent
graphics to do 3D transformations or page-flipping. All of the user interface was written using
David E. Smyth’s Widget Creation Library (Wcl-1.05). This library is included in the LEaP dis-
tribution, as is the Xraw 3D widget set by Vladimir Romanovski (modeled on the ATHENA 3D
widget set by Kaleb Keithley).

Usingtleap, the user can:

Read AMBER PREP input files

Read AMBER PARM format parameter sets

Read and write Object File Format files (OFF)

Read and write PDB files

Construct new residues and molecules using simple commands

Link together residues and create nonbonded complexes of molecules

Place counterions around a molecule

Solvate molecules in arbitrary solvents

Modify internal coordinates within a molecule

Generate files that contain topology and parameters for AMBER and SPASMS

In addition, withxleapthe user can:

Access commands using a simple point and click interface

Draw new residues and molecules in a graphical environment

View structures graphically

Graphically dock molecules

Modify the properties of atoms, residues, and molecules using a

spreadsheet editor

Input or alter molecular mechanics parameters using a spreadsheet editor.

3.2. Concepts
In order to effectively use LEaP it is necessary to understand the philosophy behind the pro-

gram, especially of concepts of LEaPcommands, variables,andobjects.In addition to exploring
these concepts, this section also addresses the use of external files and libraries with the program.

2/28/02

LEaP Concepts Page 23

3.2.1. Commands
A researcher uses LEaP by entering commands that manipulate objects. An object is just a

basic building block; some examples of objects are ATOMs, RESIDUEs, UNITs, and PARM-
SETs. The commands that are supported within LEaP are described throughout the manual and
are defined in detail in the "Command Reference" section.

The heart of LEaP is a command-line interface that accepts text commands which direct the
program to perform operations on objects. All LEaP commands have one of the following two
forms:

command argument1 argument2 argument3 ...

variable = command argument1 argument2 ...

For example:

edit ALA

trypsin = loadPdb trypsin.pdb

Each command is followed by zero or more arguments that are separated by whitespace. Some
commands return objects which are then associated with a variable using an assignment (=) state-
ment. Each command acts upon its arguments, and some of the commands modify their argu-
ments’ contents. The commands themselves are case- insensitive. That is, in the above example,
edit could have been entered asEdit , eDiT , or any combination of upper and lower case char-
acters. Similarly,loadPdb could have been entered a number of different ways, including
loadpdb . In this manual, we frequently use a mixed case for commands. We do this to enhance
the differences between commands and as a mnemonic device. Thus, while we writecre-
ateAtom , createResidue , and createUnit in the manual, the user can use any case
when entering these commands into the program.

The arguments in the command text may beobjectssuch as NUMBERs, STRINGs, or
LISTs or they may bevariables. These two subjects are discussed next.

3.2.2. Variables
A variable is a handle for accessing an object. A variable name can be any alphanumeric

string whose first character is an alphabetic character. (Alphanumeric means that the characters
of the name may be letters, numbers, or special symbols such as "*". The following special sym-
bols should not be used in variable names: dollar sign, comma, period, pound sign, equal sign,
space, semicolon, double quote, or list open or close characters { and }. LEaP commands should
not be used as variable names. Variable names are case-sensitive: "ARG" and "arg" are different
variables. Variables are associated with objects using an assignment statement not unlike regular
computer languages such as FORTRAN or C.

mole = 6.02E23

MOLE = 6.02E23

myName = "Joe Smith"

listOf7Numbers = { 1.2 2.3 3.4 4.5 6 7 8 }

In the above examples, bothmole andMOLEare variable names, whose contents are the same
(6.02E23). Despite the fact that bothmole andMOLEhave the same contents, they arenot the
same variable. This is due to the fact that variable names are case-sensitive. LEaP maintains a

2/28/02

LEaP Concepts Page 24

list of variables that are currently defined and this list can be displayed using thelist command.
The contents of a variable can be printed using thedesc command.

3.2.3. Objects
Theobject is the fundamental entity in LEaP. Objects range from the simple objects NUM-

BERS and STRINGS to the complex objects UNITs, RESIDUEs, ATOMs. Complex objects have
properties that can be altered using theset command and some complex objects can contain
other objects. For example, RESIDUEs are complex objects that can contain ATOMs and have
the properties: residue name, connect atoms, and residue type.

3.2.3.1. NUMBERs
NUMBERs are simple objects and they are identical to double precision variables in FOR-

TRAN and double in C.

3.2.3.2. STRINGs
STRINGS are simple objects that are identical to character arrays in C and similar to char-

acter strings in FORTRAN. STRINGS are represented by sequences of characters which may be
delimited by double quote characters. Example strings are:

"Hello there"

"String with a "" (quote) character"

"Strings contain letters and numbers:1231232"

3.2.3.3. LISTs
LISTs are made up of sequences of other objects delimited by LIST open and close charac-

ters. The LIST open character is an open curly bracket ({) and the LIST close character is a close
curly bracket (}). LISTs can contain other LISTs and be nested arbitrarily deep. Example LISTs
are:

{ 1 2 3 4 }

{ 1.2 "string" }

{ 1 2 3 { 1 2 } { 3 4 } }

LISTs are used by many commands to provide a more flexible way of passing data to the com-
mands. ThezMatrix command has two arguments, one of which is a LIST of LISTs where
each subLIST contains between three and eight objects.

3.2.3.4. PARMSETs (Parameter Sets)
PARMSETs are objects that contain bond, angle, torsion, and nonbond parameters for

AMBER force field calculations. They are normally loaded frome.g. parm94.dat andfrc-
modfiles.

3.2.3.5. ATOMs
AT OMs are complex objects that do not contain any other objects. The ATOM object is

similar to the chemical concept of atoms. Thus, it is a single entity that may be bonded to other
AT OMs and it may be used as a building block for creating molecules. AT OMs have many prop-
erties that can be changed using theset command. These properties are defined below.

2/28/02

LEaP Concepts Page 25

name
This is a case-sensitive STRING property and it is the ATOM’s name. The
names for all ATOMs in a RESIDUE should be unique. Thename has no rele-
vance to molecular mechanics force field parameters; it is chosen arbitrarily as a
means to identify ATOMs. Ideally, thename should correspond to the PDB stan-
dard, being 3 characters long except for hydrogens, which can have an extra digit
as a 4th character.

type
This is a STRING property. It defines the AMBER force field atom type. It is
important that the character case match the canonical type definition used in the
appropriate "parm.dat" or "frcmod" file. For smooth operation, all atom types
need to have element and hybridization defined by theaddAtomTypes com-
mand. The standard AMBER force field atom types are added by the default
"leaprc" file.

charge
The charge property is a NUMBER that represents the ATOM’s electrostatic
point charge to be used in a molecular mechanics force field.

element
The atomic element provides a simpler description of the atom than thetype ,
and is used only for LEaP’s internal purposes (typically when force field informa-
tion is not available). The element names correspond to standard nomenclature;
the character "?" is used for special cases.

position
This property is a LIST of NUMBERS. The LIST must contain three values: the
(X, Y, Z) Cartesian coordinates of the ATOM.

AMBER also supports a type of calculation known as Free Energy Perturbation. During
Free Energy Perturbation, one chemical species is slowly transformed into another and the energy
change associated with the transformation is measured. In order to perform a Free Energy Pertur-
bation, the properties of the perturbed ATOMs must also be set. These properties correspond to
the ATOM properties described above, but the values represent the final state of the perturbed
species, as described below. If a Free Energy Perturbation calculation is not to be performed, the
following properties can be left asnull . They are only used when the "PERTURB" property’s
value is "true" for that atom, when doing asaveAmberParmPert to save a perturbation topol-
ogy file. (Note that mass is never perturbed.)

pertName
This property can either benull or a case sensitive STRING. The property is a
unique identifier for an ATOM in its final state during a Free Energy Perturbation
calculation. If it isnull then the perturbed ATOM will inherit the unperturbed
name. ThepertName has no effect on calculations and is mainly useful as a
reminder of what was intended.

pertType
This property can either benull or a STRING. If the value isnull then the
AT OM type will not be perturbed in a perturbation calculation. If thepert-
Type is a STRING, the STRING is the AMBER force field atom type of the per-
turbed ATOM. This property is case-sensitive.

pertCharge
The pertCharge property is a NUMBER. It represents the final electrostatic

2/28/02

LEaP Concepts Page 26

point charge on an ATOM during a Free Energy Perturbation.

3.2.3.6. RESIDUEs
RESIDUEs are complex objects that contain ATOMs. RESIDUEs are collections of

AT OMs, and are either molecules (e.g. formaldehyde) or are linked together to form molecules
(e.g. amino acid monomers). RESIDUEs have sev eral properties that can be changed using the
set command. (Note that database RESIDUEs are each contained within a UNIT having the
same name; the residue GLY is referred to as GLY.1 when setting properties. When two of these
single-UNIT residues are joined, the result is a single UNIT containing the two RESIDUEs.)

One property of RESIDUEs is connection ATOMs. Connection AT OMs are ATOMs that
are used to make linkages between RESIDUEs. For example, in order to create a protein, the N-
terminus of one amino acid residue must be linked to the C-terminus of the next residue. This
linkage can be made within LEaP by setting the N ATOM to be a connection ATOM at the N-ter-
minus and the C ATOM to be a connection ATOM at the C-terminus. As another example, two
CYX amino acid residues may form a disulfide bridge by crosslinking a connection atom on each
residue.

There are several properties of RESIDUEs that can be modified using theset command.
The properties are described below:

connect0
This defines an ATOM that is used in making links to other RESIDUEs. In
UNITs containing single RESIDUEs, the RESIDUEs’connect0 AT OM is
usually defined as the UNITs’head AT OM. (This is how the standard library
UNITs are defined.) For amino acids, the convention is to make the N-terminal
nitrogen theconnect0 AT OM.

connect1 This defines an ATOM that is used in making links to other RESIDUEs. In
UNITs containing single RESIDUEs, the RESIDUEs’connect1 AT OM is usu-
ally defined as the UNITs’tail AT OM. (This is done in the standard library
UNITs.) For amino acids, the convention is to make the C-terminal oxygen the
connect1 AT OM.

connect2 This is an ATOM property which defines an ATOM that can be used in making
links to other RESIDUEs. In amino acids, the convention is that this is the
AT OM to which disulphide bridges are made.

restype This property is a STRING that represents the type of the RESIDUE. Currently,
it can have one of the following values:"undefined" , "solvent" , "pro-
tein" , "nucleic" , or "saccharide" . Some of the LEaP commands
behave in different ways depending on the type of a residue. For example, the
solvate commands require that the solvent residues be of type"solvent" . It is
important that the proper character case be used when defining this property.

name The RESIDUE name is a STRING property. It is important that the proper char-
acter case be used when defining this property.

3.2.3.7. UNITs
UNITs are the most complex objects within LEaP, and the most important. UNITs, when

paired with one or more PARMSETs, contain all of the information required to perform a calcula-
tion using AMBER. UNITs have the following properties which can be changed using theset
command:

2/28/02

LEaP Concepts Page 27

head

tail These define the ATOMs within the UNIT that are connected when UNITs are
joined together using thesequence command or when UNITs are joined
together with the PDB or PREP file reading commands. Thetail AT OM of one
UNIT is connected to thehead AT OM of the next UNIT in any sequence. (Note:
a "TER card" in a PDB file causes a new UNIT to be started.)

box This property can either benull , a NUMBER, or a LIST. The property defines
the bounding box of the UNIT. If it is defined asnull then no bounding box is
defined. If the value is a single NUMBER then the bounding box will be defined
to be a cube with each side being NUMBER of angstroms across. If the value is
a LIST then it must be a LIST containing three numbers, the lengths of the three
sides of the bounding box.

cap This property can either benull or a LIST. The property defines the solvent
cap of the UNIT. If it is defined asnull then no solvent cap is defined. If the
value is a LIST then it must contain four numbers, the first three define the Carte-
sian coordinates (X, Y, Z) of the origin of the solvent cap in angstroms, the fourth
NUMBER defines the radius of the solvent cap in angstroms.

Examples of setting the above properties are:

set dipeptide head dipeptide.1.N

set dipeptide box { 5.0 10.0 15.0 }

set dipeptide cap { 15.0 10.0 5.0 8.0 }

The first example makes the amide nitrogen in the first RESIDUE within "dipeptide" thehead
AT OM. The second example places a rectangular bounding box around the origin with the (X, Y,
Z) dimensions of (5.0, 10.0, 15.0) in angstroms. The third example defines a solvent cap cen-
tered at (15.0, 10.0, 5.0) angstroms with a radius of 8.0 Å.Note: the "set cap" command does
not actually solvate, it just sets an attribute. See thesolvateCap command for a more practical
case.

UNITs are complex objects that can contain RESIDUEs and ATOMs. UNITs can be created
using thecreateUnit command and modified using theset commands. The contents of a
UNIT can be modified using theadd andremove commands.

3.2.3.8. Complex objects and accessing subobjects
UNITs and RESIDUEs are complex objects. Among other things, this means that they can

contain other objects. There is a loose hierarchy of complex objects and what they are allowed to
contain. The hierarchy is as follows:

• UNITs can contain RESIDUEs and ATOMs.

• RESIDUEs can contain ATOMs.

The hierarchy is loose because it does not forbid UNITs from containing ATOMs directly. How-
ev er, the convention that has evolved within LEaP is to have UNITs directly contain RESIDUEs
which directly contain ATOMs.

Objects that are contained within other objects can be accessed using dot "." notation. An exam-
ple would be a UNIT which describes a dipeptide ALA-PHE. The UNIT contains two RESIDUEs
each of which contain several ATOMs. If the UNIT is referenced (named) by the variable
dipeptide , then the RESIDUE named ALA can be accessed in two ways. The user may type

2/28/02

LEaP Concepts Page 28

one of the following commands to display the contents of the RESIDUE:

desc dipeptide.ALA

desc dipeptide.1

The first translates to "some RESIDUE namedALA within the UNIT nameddipeptide ". The
second form translates as "the RESIDUE with sequence number1 within the UNIT named
dipeptide ". The second form is more useful because every subobject within an object is guar-
anteed to have a unique sequence number. If the first form is used and there is more than one
RESIDUE with the nameALA, then an arbitrary residue with the nameALA is returned. To access
AT OMs within RESIDUEs, the notation to use is as follows:

desc dipeptide.1.CA

desc dipeptide.1.3

Assuming that the ATOM with the nameCA has a sequence number3, then both of the above
commands will print a description of the $alpha$−carbon of RESIDUEdipeptide.ALA or
dipeptide.1 . The reader should keep in mind thatdipeptide.1.CA is the ATOM, an
object, contained within the RESIDUE namedALA within the variabledipeptide . This means
thatdipeptide.1.CA can be used as an argument to any command that requires an ATOM as
an argument. Howeverdipeptide.1.CA is not a variable and cannot be used on the left hand
side of an assignment statement.

In order to further illustrate the concepts of UNITs, RESIDUEs, and ATOMs, we can exam-
ine the log file from a LEaP session. Part of this log file is printed below.

> loadOff all_amino94.lib

> desc GLY

UNIT name: GLY

Head atom: .R<GLY 1>.A<N 1>

Tail atom: .R<GLY 1>.A<C 6>

Contents:

R<GLY 1>

> desc GLY.1

RESIDUE name: GLY

RESIDUE sequence number: 1

RESIDUE PDB sequence number: 0

Type: protein

Connection atoms:

Connect atom 0: A<N 1>

Connect atom 1: A<C 6>

Contents:

A<N 1>

A<HN 2>

A<CA 3>

A<HA2 4>

A<HA3 5>

A<C 6>

A<O 7>

2/28/02

LEaP Concepts Page 29

> desc GLY.1.3

ATOM

Normal Perturbed

Name: CA CA

Type: CT CT

Charge: -0.025 0.000

Element: C (not affected by pert)

Atom position: 3.970048, 2.845795, 0.000000

Atom velocity: 0.000000, 0.000000, 0.000000

Bonded to .R<GLY 1>.A<N 1> by a single bond.

Bonded to .R<GLY 1>.A<HA2 4> by a single bond.

Bonded to .R<GLY 1>.A<HA3 5> by a single bond.

Bonded to .R<GLY 1>.A<C 6> by a single bond.

In this example, command lines are prefaced by ">" and the LEaP program output has no such
character preface. The first command,

> loadOff all_amino94.lib

loads an OFF library containing amino acids. The second command,

> desc GLY

allows us to examine the contents of the amino acid UNIT, GLY. The UNIT contains one
RESIDUE which is named GLY and this RESIDUE is the first residue in the UNIT (R<GLY 1>).
In fact, it is also the only RESIDUE in the UNIT. Thehead andtail AT OMs of the UNIT are
defined as the N- and C-termini, respectively. Thebox andcap UNIT properties are defined as
"null". If these latter two properties had values other than "null", the information would have
been included in the output of thedesc command.

The next command line in the session,

> desc GLY.1

enables us to examine the first residue in the GLY UNIT. This RESIDUE is named GLY and its
residue type is that of aprotein . Theconnect0 AT OM (N) is the same as the UNITs’head
AT OM and theconnect1 AT OM (C) is the same as the UNITs’tail AT OM. There are seven
AT OM objects contained within the RESIDUE GLY in the UNIT GLY.

Finally, let us look at one of the ATOMs in the GLY RESIDUE.

> desc GLY.1.3

The ATOM has a name (CA) that is unique among the atoms of the residue. The AMBER force
field atom type for CA is CT. The type of element, atomic point charge, and Cartesian coordi-
nates for this ATOM hav e been defined along with its bonding attributes. Other force field
parameters, such as the van der Waals well depth, are obtained from PARMSETs.

2/28/02

LEaP Concepts Page 30

3.3. Starting LEaP

% xleap [−h] [−I dir] [−f file] [−s]

% tleap [−h] [-I dir] [−f file] [−s]

The user may enter several options when starting the LEaP program. If the option "−h" is used
(e.g.,xleap −h), then the program will print a list of start-up options and then exit. A directory
may be added to the program’s search path by using the option: "−I dir ". This will cause the
program to searchdir whenever a file is requested. If the user would like to execute LEaP com-
mands at start-up, they should use the option: "−f file ". Finally, if the user enters the com-
mand option "−s", the "leaprc" file will not be executed at start-up.

A file called "leaprc" is executed as a script file at the start of the LEaP session unless the
user suppresses it with a command line option. Sample files are in$AMBERHOME/dat/leap/cmd,
and you may wish to copy one of these to become "your" default file. LEaP will look first for a
learpcfile in the user’s current directory, then in any directories included with-I flags.

3.3.1. Verbosity
Theverbosity command is used to control how much output LEaP displays to the user.

A verbosity level of0 tells LEaP to print the minimum amount of information. A verbosity level
of 1 tells LEaP to print all information it can, and a verbosity level of2 tells LEaP to print all
information and to display each line read from source files executed using thesource com-
mand.

3.3.2. Log File
The command line interface allows the user to specify a log file that is used to log all input

and output within the command line environment. The log file is named using thelogFile
command. The file has two purposes: to allow the user to see a complete record of operations per-
formed by LEaP, and to help recover from (and recreate) program crashes. Output from LEaP
commands is written to the log file at a verbosity level of2 regardless of the verbosity level set by
the user using theverbosity command. Each line in the log file that was typed in by the user
begins with the two characters "> " (a greater-than sign followed by a space). This allows the
user to extract the commands typed into LEaP from the log file to create a script file that can be
executed using thesource command. This provides a type of insurance against program
crashes by allowing the user to regenerate their interactive sessions. An example of a command
that works on UNIX systems and that will create a script to reenact a LEaP session is:

% cat LOGFILE | grep "ˆ> " | sed "s/ˆ> //" > SOURCEFILE.x

Note that changes via graphical and table interfaces (xleap) are not captured by command-line
traces.

2/28/02

LEaP Using LEap Page 31

3.4. Using LEaP
In the next two sections, we describe how to use the tleap and xleap user interfaces. Strate-

gies for using LEaP in research are discussed in a subsequent section: "Using LEaP With
AMBER".

tleap(terminal LEaP) is the non-graphical, command-line-only interface to LEaP. It has the
same functionality as thexleap main window (Universe Editor Command Window, described
below), and uses standard text control keys.

xleap is a windowing interface to LEaP. In addition to the command-line interface con-
tained in the Universe Editor window, it has a Unit Editor (graphical molecule editor), an Atom
Properties Editor, and a Parmset Editor. These editors are discussed in subsequent subsections.

3.4.1. Universe Editor
The window that first appears when the user starts xleap is called the Universe Editor. The

Universe Editor is the most basic way in which users can interact with xleap. It has two parts, the
"command window," which corresponds to the tleap command interface, and the "pulldown"
items above the window, which provide mouse-driven methods to generate specific commands for
the command window, either directly or via popped-up dialog boxes.

The items in the pulldowns allow the user to generate commands using dialog boxes. To dis-
play the "File" pulldown, for example, press the left mouse button on "File;" to select an item in
the pulldown, keep the button down, move the mouse to highlight the item, then release the
mouse button. A dialog box will then pop up containing fields which the user can fill in, and lists
from which values can be chosen; these will be used to generate commands for the command
window interface.

Currently, the following pulldown/popup commands are defined:

loadOff The dialog box contains a single file list. The user can move about the subdirec-
tories and select the desired LEaP OFF library to load. Alternately, the name of
the file to be loaded may be typed. The user should press the "Accept" button
after selecting a file in order to execute the command.

saveOff This dialog box contains a list of UNITs/PARMSETs and a file list. The user
must choose the UNIT or PARMSET to save, and choose the file to which to
write. If the file to be written to does not exist, the user may type the name of a
new file into the file name text box. The user can enter the command by pressing
the "Accept" button.

loadAmberPrep
The dialog box contains a single file list. The user can move about the subdirec-
tories, and select the AMBER PREP file to load. Alternately, they may type the
name of the file to be loaded. The user should press the "Accept" dialog box but-
ton after selecting a file.

loadPdb There are two parts to this dialog box. The PDB file will be read into a UNIT
and that UNIT will be associated with a variable. The variable name to associate
with the UNIT is entered into the first text field. The name of the PDB file is
either selected from the file list or the file name is typed into the dialog box. The
user can execute the command by pressing the "Accept" button.

impose This dialog box has three parts. The first part is a list of UNITs from which the
user can select the UNIT which is to be changed. The second part is a list of
STRING objects that may or may not contain internal coordinates. The third part

2/28/02

LEaP Using LEap Page 32

is a text field for entry of RESIDUE sequence numbers, or ranges of sequence
numbers. The user executes the command by pressing the "Accept" button.

edit A list of UNITs and PARMSETs that can be edited is presented to the user. The
user may select one or type in the name of a UNIT. The user may "Accept" or
"Cancel" the command by pressing one of these two buttons.

source The user can select a file which is to be used in asource command from the
file list. Alternately, they may type the name of the file to be loaded. The user
should press the "Accept" button after selecting a file.

verbosity The user is presented with three levels ofverbosity in order to regulate the
amount of output to be displayed during the LEaP session. The user should
select one of theseverbosity level buttons and press the "Accept" button to
enter the command.

quit The user may "Accept" or "Cancel" thequit command.

3.4.2. Unit Editor
When the user enters theedit command from the Universe Editor Command Window, the

Unit Editor will be displayed if the argument to theedit command is an existing UNIT or a
nonexistent (i.e. new) object. The Parmset Editor will be activated if the argument is a PARM-
SET. The Parmset Editor is discussed later in this subsection.

The Unit Editor has five parts. At the top of the window is a pulldown menu bar; below it is
a set of buttons titled "Manipulation" that define the mode of mouse activity in the graphics win-
dow, and below that, a list of elements to select for the manipulation "Draw" mode (selecting one
automatically selects "Draw" mode). Then comes the graphical molecule-editing ("viewing")
window itself, and at the very bottom a text window where status and errors are reported.

3.4.2.1. Unit Editor Menu Bar
The menu bar has three pulldowns: "Unit," "Edit," and "Display."

Unit The Unit pulldown contains commands affecting the whole UNIT.

"Check unit" − checks the UNIT in the viewing window for improbable bond
lengths, missing force field atom types, close nonbonded contacts, and a non-
integral and non-zero total charge. Information is printed in the text window at
the bottom of the Unit Editor.

"Calculate charge" − the total electrostatic charge for the UNIT is displayed in
the text window at the bottom of the Unit Editor.

"Build," "Add H & Build" − the coordinates of new atoms are adjusted according
to hybridization (inferred from bonds) and standard geometries. (See also the
Edit pulldown’s "Relax selection.) Newly-drawn ATOMs are marked as
"unbuilt" until they are marked otherwise by one of the Build commands or by
theEdit pulldown’s "Mark selection (un)built." The builderonly builds coordi-
nates for unbuilt ATOMs. This allows users to draw molecules piecemeal and
make adjustments as they draw, without worrying that the builder is going to
undo their work. "Add H & Build" adds hydrogens to the ATOMs that do not
have a full valence and builds coordinates for the hydrogens and any other
AT OMs that are marked "unbuilt." The number of hydrogens added to each
AT OM is determined by the hybridization and element type of each ATOM.

2/28/02

LEaP Using LEap Page 33

"Import unit" − a selection window pops up for the user to incorporate a copy of
another unit in the current one. The imported unit will generally superimpose on
the existing one. (Hint: select all atoms in the current unit before doing this to
simplify dragging them apart using the ManipulationMove mode.)

"Close" − Exit the Editor.

Edit The Edit pulldown contains commands relating to the currently- selected ATOMs
in the viewer window. Selection is described below in the "Manipulation buttons"
section.

"Relax selection" − performs a limited energy minimization of all selected
AT OMs, leaving unselected ATOMs fixed in place, by relaxing strained bonds,
angles, and torsions. If atom types have been assigned and can be found in the
currently-loaded force field, force field parameters are used. If no types are avail-
able then default parameters are used that are based on ATOM hybridization.
This command invokes an iterative algorithm that can take some time to converge
for large systems. As the algorithm proceeds, the modified UNIT will be continu-
ously updated within the viewing window. The user can stop the process at any
time by placing the cursor within the viewing window and typingcontrol-C .
Since only internal coordinates are energy minimized, steric overlap can result.

"Edit selected atoms" − pops up an Atom Properties Editor, a tool for examin-
ing/setting the properties of the selected ATOMs. The Atom Properties Editor
allows the user to edit the ATOM names, types, charges, perturbed names, etc. in
a convenient table format. It is described in a separate section below.

"Flip chirality" This command inverts the chirality of all selected ATOMs. In
order for the chirality to be inverted, the ATOM cannot be in more than one ring.
The operation causes the lightest chains leaving the ATOM to be moved so as to
invert the chirality. If the ATOM has only three chains attached to it, then only
one of the chains will be moved.Note: this command is rather apt to crash LEaP.

"Select Rings/Residues/Molecules" − expands the currently selected group of
atoms to include all partially-contained rings, residues, or molecules.

"Show everything" − causes all ATOMs to become visible.

"Hide selection" − makes all selected ATOMs invisible.

"Show selection only" − makes only selected ATOMs visible.

"Mark selection unbuilt/built" − see "Unit/Build," above.

Display The Display pulldown contains commands that determine what information is
displayed within the viewing window.

"Names" − toggles display of ATOM names at each ATOM position.

"Perturbed names" − toggles display of perturbed ATOM names. The perturbed
names are displayed immediately after the unperturbed names and are prefixed
with a forward slash "/". (See the "Concepts" section for a discussion of Free
Energy Perturbation ATOM names.)

"Types" − toggles display of molecular mechanics atom types. The ATOM types
are displayed within parentheses "()".

"Charges" − toggles display of the atomic charges.

2/28/02

LEaP Using LEap Page 34

"Perturbed types" − toggles display of perturbed atom types of the ATOMs. Per-
turbed types are displayed within the same parentheses as the unperturbed types,
immediately after the unperturbed types, and are prefixed by a forward slash "/".
(See the "Concepts" section for a discussion of Free Energy Perturbation ATOM
types.)

"Residue names" − toggles display of residue names. These are displayed at the
position of the first ATOM, before any of that ATOM’s information that may be
displayed. The residue names are displayed within angled brackets "<>".

"Axes" − toggles display of the Cartesian coordinate axes. The origin of the axes
coincides with the origin of Cartesian space.

"Periodic box" − toggles display of the periodic box, if the UNIT has one.

3.4.2.2. Unit Editor Manipulation Buttons
The Manipulation buttons are Select, Twist, Move, Erase, and Draw. They determine the

behavior of the mouse left-button when the pointer is in the Viewing Window.

Select This button allows one to select part or all of a UNIT in anticipation of a subse-
quent operation or action. In the Select mode, the user can highlight ATOMs
within the viewing window for special operations. The cursor becomes a point-
ing hand in the viewing window in this mode. Selected ATOMs are displayed in
a different color (or different line styles on monochrome systems) from all other
AT OMs. Atoms can be selected with the left-button in several ways: first, click-
ing on an atom and releasing selects that atom. Clicking twice in a row on an
atom (at any speed) selects all atoms (this is a bug - only the residue should be
selected). Keeping the button down and moving to release on another atom
selects all ATOMs in the shortest chain between the two ATOMs, if such a chain
exists. Finally, by first pressing the button in empty space, and holding it down as
the mouse is moved, one can "drag a box" enclosing atoms of interest. Note that
a current selection can be expanded by using the "Edit" menubar pulldown select
option to complete any partial selection of rings, residues or molecules.

If the user holds down the SHIFT key while performing any of the above actions,
the same effect will be seen, except ATOMs will be unselected.

Twist Twist mode operates on previously-Select ed atoms. The intention is to
allow rotation about dihedrals; if too many atoms are selected, odd transforma-
tions can occur. While in theTwist mode, the pointer looks like a curved
arrow. Twisting is driven by holding down the left-button anywhere in the view-
ing window and moving the mouse up and down. It is important to select a com-
plete torsion (all four atoms) before trying to "twist" it.

Move Like Twist , Move mode operates on previously-Select ed atoms. While in the
Move mode, the pointer looks like four arrows coming out of one central point.
Holding down the left-button anywhere allows movement of these atoms by drag-
ging in any direction in the viewing plane. (The view can be rotated by holding
down the middle-button to allow any movement desired.) This option allows the
user to move the selected ATOMs relative to the unselected ATOMs.

To rotate the selected ATOMs relative to the unselected ones, press and drag the
mode (left) button while holding down the SHIFT key. The selected ATOMs will
rotate around a central ATOM on a "virtual sphere" (see the section below on the

2/28/02

LEaP Using LEap Page 35

rotate (middle) button for more information on the "virtual sphere"). The user
can change which ATOM is used as the center of rotation by clicking the mode
(left) button on any of the ATOMs in the window.

Erase Erase mode causes the cursor to resemble a chalkboard eraser when it is in the
viewing window. Clicking the left-button will delete any atoms or bonds under
this cursor, one atom or bond per click.

Draw default "Elements" atom in the next array of buttons; the initial default is carbon.
While in the draw mode, the pointer is a pencil when in the viewing window.
Clicking the left-button deposits an atom of the current element, while dragging
the cursor with the left-button held down draws a bond: if no atom is found
where the button is released, one is created.

When the pointer approaches an ATOM, the end of the line connected to the
pointer will "snap" to the nearest ATOM. This is to facilitate drawing of bonds
between ATOMs. Any bonds that are drawn will by default be single bonds. To
change the order of a bond, the user would move the mouse to any point along
the bond and click the mode (left) button. This will cause the order of the bond to
increase until it is reset back to a single bond. The user can cycle through the fol-
lowing bond order choices: single, double, triple, and aromatic.

If the user rotates a structure as it is being drawn, she will notice that all of the
AT OMs that have been drawn lie in the same plane. New ATOMs are automati-
cally placed in the plane of the screen. The fact that LEaP places the new
AT OMs in the same plane is not a handicap because once a rough sketch of part
of the structure is compete, the user can invoke one of LEaP’s two model build-
ing facilities ("Unit/Build" and "Edit/Relax Selection" in the Unit Editor Menu
bar) to build full three dimensional coordinates.

3.4.2.3. Unit Editor Elements Buttons
C, H, O, ...

These buttons put the viewing window inDraw mode if it is not in that mode
already, and select the drawing element. The more common elements have their
own buttons, and all elements are also found by pulling down theother ele-
ments button.

3.4.2.4. Unit Editor Viewing Window
The viewing window displays a projection of the UNIT currently being edited. The user

can manipulate the structure within the viewing window with the mouse. By moving the mouse
and holding down the mouse buttons, the user can rotate, scale, and translate the UNIT within the
window. The functions attached to the mouse buttons are:

Rotate (Middle button)
By pressing the rotate (middle) button within the viewing window and dragging
the mouse, the user can rotate the UNIT around the center of the viewing win-
dow. While the rotate (middle) button is down, a circle appears within the view-
ing window, representing a "virtual sphere trackball." As the user drags the
mouse around the outside of the circle, the UNIT will spin around the axis nor-
mal to the screen. As the user drags the mouse within the circle, the UNIT will
spin around the axis in the screen, perpendicular to the movement of the mouse.
The structures that are being viewed can be considered to be embedded within a

2/28/02

LEaP Using LEap Page 36

sphere of glass. The circle is the projection of the edge of the sphere onto the
screen. Rotating a UNIT while the mouse is within the circle is akin to placing a
hand on a glass sphere and turning the sphere by pulling the hand. The rotate
operation does not modify the coordinates of the ATOMs; rather, it simply
changes the user’s point of view.

Translate (Right button)
By pressing the translate (right) button within the viewing window and dragging
the mouse around the viewing window, the user can translate the UNIT within the
plane of the screen. The structures will follow the mouse as it moves around the
window. This operation does not modify the coordinates of the UNIT.

Scale (middle plus right button)
If the scale "button" (holding the middle and right buttons down at the same
time) is depressed, the user will change the size of the structures within the view-
ing window. Pressing the scale (middle plus right) button and dragging the mouse
up and down the screen will increase and decrease the scale of the structures.
This operation does not modify the coordinates of the UNIT.

Mode button (left button) and the viewing window mode
The function of the left button is determined by the current mode of the viewing
window as described in the "Manipulation" section, above. When the mouse
enters the viewing window it changes shape to reflect the current mode of the
viewing window.

Spacebar Another always-available operation when the pointer is in the viewing window is
the keyboard spacebar, which centers the view of the molecule, and is especially
useful if the UNIT becomes "lost" due to some operation.

The functions of the middle and right buttons are fixed and always available to the user. This
allows the user to change the viewpoint of the UNIT within the viewing window reg ardless of its
current mode. The user might ask why there are controls to translate in the plane of the screen,
but not out of the plane of the screen. This is because LEaP does not have depth-cueing or stereo
projection and this makes it difficult for users to perceive changes in the depth of a structure.
However, the user can rotate the entire UNIT by 90 degrees which will orient everything so that
the direction that was coming out of the screen becomes a direction lying in the plane of the
screen. Once the UNIT has been rotated using the rotate (middle) button, the user can translate
the structure anywhere in space. While it does take some getting used to, users can become very
adept at the combination of rotations and translations.

3.4.3. Atom Properties Editor
The Atom Properties Editor is popped up by the Unit Editor when the user selects theEdit

selected atoms command from theEdit pulldown. The Atom Properties Editor allows the
user to edit the properties of ATOMs using a convenient table format. ATOM properties are:
name, type, charge, element, perturbed name, perturbed type, and perturbed charge. (Mass is not
perturbed.) The column labelled "PERTURB" should be blank (or "false") if that atom is not
being perturbed, and should be set to "true" otherwise.

3.4.4. Parmset Editor
If the user enters the commandedit Foo in the Universe Editor andFoo is a PARMSET,

then a Parmset Editor is popped up. First, a window appears which contains a number of buttons.
The buttons list the parameters that can be edited − Atom, Bond, Angle, Proper Torsion, Improper

2/28/02

LEaP Using LEap Page 37

Torsion, and Hydrogen Bond − and an option to close the editor. Choosing one of the parameter
buttons will pop up a Table Editor. This editor resembles that of the Atom Properties Editor, hav-
ing three parts: the Menu Bar, Status Window, and Table Window.

3.5. Basic instructions for using LEaP with AMBER
This section gives an overview of how LEaP is most commonly used. Detailed descriptions

of all the commands are given in the following section

3.5.1. Building a Molecule For Molecular Mechanics
In order to prepare a molecule within LEaP for AMBER, three basic tasks need to be com-

pleted.

(1) Any needed UNIT or PARMSET objects must be loaded;

(2) The molecule must be constructed within LEaP;

(3) The user must output topology and coordinate files from LEaP to use in AMBER.

The most typical command sequence is the following:

source leaprc.ff94 load a force field

x = loadPdb trypsin.pdb load in a structure

.... add in cross-links, solvate, etc.

saveAmberParm x prmtop prmcrd save files for sander or gibbs

There are a number of variants of this:

(1) Although loadPdb is by far the most common way to enter a structure, one might use
loadOff, or loadAmberPrep, or use thezmat command to build a molecule from a z-
matrix. See the Commands section below for desciptions of these options. For case
where you do not have a starting structure (in the form of a pdb file) LEaP can be used to
build the molecule; you will find, however, that this is not always as easy as it might be.
Many experienced Amber users turn to other (commerical and non-commerical) programs
to create their initial structures.

(2) Be very attentive to any errors produced in theloadPdbstep; these generally mean that
LEaP has mis-read the file. A general rule of thumb is to keep editing your input pdb file
until LEaP stops complaining. It is often convenient to use theaddPdbAtomMapor
addPdbResMapcommands to make systematic changes from the names in your pdb files
to those in the Amber topology files; see theleaprcfiles for examples of this.

(3) The saveAmberParmcommand cited above is appropriate for calculations that do not
compute free energies; for the latter you will need to usesaveAmberParmPert. For polar-
izable force fields, you will need to addPol to the above commands (see the Commands
section, below.)

If you do want to build your own molecule, here is a brief description of how one would make a
water molecule: After the xleap program is started and a PARMSET is loaded, the user can enter
the Unit Editor with theedit command. If the command argument (WAT) is not an existing
UNIT, a new RESIDUE and UNIT will be created and the program will display a Unit Editor for
WA T.

2/28/02

LEaP Using LEap with AMBER Page 38

The first objective is to draw and build the molecule. In the Control Window is a button
nameddraw . The user should select this button with the left mouse button. The Viewing Win-
dow will now be set to the Draw mode. The user should then select the O (oxygen) element but-
ton in the Control Window. This will set the drawing element type to oxygen. TheDraw mode
mouse button (left button) is depressed and clicked anywhere on the screen. The user can then
release the mouse button. Now the user can select theUnit pulldown command:Add H &
Build . Two hydrogen ATOMs will be added to the oxygen and the molecular structure will be
generated using the geometry builder rules. The user may want to rotate the molecule, using the
middle mouse button, to confirm that the geometry is correct.

Next, the user needs to edit the ATOMs. The entire molecule should be selected by pressing
the ManipulationSelect option and then pressing theSelect mode mouse button (left but-
ton) anywhere in the Viewing Window background and dragging the mouse until the select box
encompasses the molecule. The mouse button can then be released. The user should then choose
theEdit selected items command from theEdit pulldown. An Atom Properties Editor
will appear.

The Unit Editor has already assigned names to the ATOMs and if desired, the user can
change the names. In order for correct AMBER force field parameters to be assigned, the user
must define the oxygen and hydrogen ATOM types as "OW" and "HW", respectively. The user
should also assign electrostatic point charges to each ATOM. The Atom Properties Editor can
then be closed by choosing the "Save and quit" command in theTable pulldown. The UNIT has
been created and the user can return to the xleap Universe Editor.

> #

> # Load the main parameter set:

> #

> parm94 = loadAmberParams parm94.dat

Loading parameters: parm94.dat

> #

> # Graphically create a water molecule within

> # the Unit Editor:

> #

> edit WAT

> #

> # If necessary, load a PDB file to obtain correct

> # Cartesian coordinates:

> #

> wat = loadPdb Wat.pdb

Loading PDB file: ./Wat.pdb

total atoms in file: 3

3.5.2. Amino Acid Residues
The accompanying table shows the amino acid UNITs and their aliases are defined in the

LEaP libraries.

For each of the amino acids found in the LEaP libraries, there has been created an n-termi-
nal and a c-terminal analog. The n-terminal amino acid UNIT/RESIDUE names and aliases are
prefaced by the letter N (e.g. NALA) and the c-terminal amino acids by the letter C (e.g.

2/28/02

LEaP Using LEap with AMBER Page 39

Group or residue Residue Name, Alias
Acetyl beginning group ACE
Amine ending group NHE
N-methylamine ending group NME
Alanine ALA
Arginine ARG
Asparagine ASN
Aspartic acid ASP
Aspartic acid--protonated ASH
Cysteine CYS
Cystine, S--S crosslink CYX
Glutamic acid GLU
Glutamic acid--protonated GLH
Glutamine GLN
Glycine GLY
Histidine, delta H HID
Histidine, epsilon H HIE
Histidine, protonated HIP
Isoleucine ILE
Leucine LEU
Lysine LYS
Methionine MET
Phenylalanine PHE
Proline PRO
Serine SER
Threonine THR
Tryptophan TRP
Tyrosine TYR
Valine VAL

CALA}. If the user models a peptide or protein within LEaP, they may choose one of three ways
to represent the terminal amino acids. The user may use 1) standard amino acids, 2) protecting
groups (ACE/NME), or 3) the charged c- and n-terminal amino acid UNITs/RESIDUEs. If the
standard amino acids are used for the terminal residues, then these residues will have incomplete
valences. These three options are illustrated below:

{ ALA VAL SER PHE }

{ ACE ALA VAL SER PHE NME }

{ NALA VAL SER CPHE }

The default for loading from PDB files is to use n- and c-terminal residues; this is established by
the addPdbResMap command in the defaultleaprc files. To force incomplete valences with
the standard residues, one would have to define a sequence ("x = { ALA VAL SER PHE
} ") and useloadPdbUsingSeq , or useclearPdbResMap to completely remove the map-
ping feature.

Histidine can exist either as the protonated species or as a neutral species with a hydrogen at
the delta or epsilon position. For this reason, the histidine UNIT/RESIDUE name is either HIP,

2/28/02

LEaP Using LEap with AMBER Page 40

HID, or HIE (but not HIS). The default "leaprc" file assigns the name HIS to HID. Thus, if a
PDB file is read that contains the residue HIS, the residue will be assigned to the HID UNIT
object. This feature can be changed within one’s own "leaprc" file.

The AMBER force fields also differentiate between the residue cysteine (CYS) and the sim-
ilar residue which participates in disulfide bridges, cystine (CYX). The user will have to explic-
itly define, using thebond command, the disulfide bond for a pair of cystines, as this information
is not read from the PDB file. In addition, the user will need to load the PDB file using the
loadPdbUsingSeq command, substituting CYX for CYS in the sequence wherever a disulfide
bond will be created.

3.5.3. Nucleic Acid Residues
The following are defined for the 1994 force field.

Group or residue Residue Name, Alias
Adenine DA,RA
Thymine DT
Uracil RU
Cytosine DC,RC
Guanine DG,RG

The "D" or "R" prefix can be used to distinguish between deoxyribose and ribose units; with
the defaultleaprc file, ambiguous residues are assumed to be deoxy. Residue names like "DA"
can be followed by a "5" or "3" ("DA5", "DA3") for residues at the ends of chains; this is also the
default established byaddPdbResMap, even if the "5" or "3" are not added in the PDB file. The
"5" and "3" residues are "capped" by a hydrogen; the plain and "3" residues include a "leading"
phosphate group. Neutral residues capped by hydrogens are end in "N," such as "DAN."

3.5.4. Miscellaneous Residues

Miscellaneous Residue unit/residue name
TIP3P water molecule TP3
Periodic box of TIP3P water WATBOX216
TIP4P water model TP4
TIP5P water model TP5
SPC/E water model SPC
Cesium cation Cs+
Potassium cation K+
Rubidium cation Rb+
Lithium cation Li+
Sodium cation Na+ or IP
Chlorine Cl- or IM
Large cation IB

"IB" represents a solvated monovalent cation (say, sodium) for use in vacuum simulations. The
cation UNITs are found in the files "ions91.lib" and "ions94.lib", while the water UNITs are in
the file "solvents.lib". Theleaprc files assign the variables WAT and HOH to the TP3 UNIT
found in the OFF library file. Thus, if a PDB file is read and that file contains either the residue
name HOH or WAT , the TP3 UNIT will be substituted. See Chapter 3 for a discussion of how to
use other water models.

2/28/02

LEaP Using LEap with AMBER Page 41

A periodic box of 216 TIP3P waters (WATBOX216) is provided in the file "solvents.lib".
The box measures 18.774 angstroms on a side. This box of waters has been equilibrated by a
Monte Carlo simulation. It is the UNIT that should be used to solvate systems with TIP3P water
molecules within LEaP. It has been provided by W. L. Jorgensen. Boxes are also available for
chloroform, methanol, and N-methylacetamide; these are described in Chapter 2.

3.6. Commands
The following is a description of the commands that can be accessed using the command

line interface intleap, or through the command line editor inxleap. Whenever an argument in a
command line definition is enclosed in brackets ([arg]), then that argument is optional. When
examples are shown, the command line is prefaced by "> ", and the program output is shown
without this character preface.

Some commands that are almost never used have been removed from this description to
save space. You can use the "help" facility to obtain information about these commands; most
only make sense if you understand what the program is doing behind the scenes.

3.6.1. add
add a b

UNIT/RESIDUE/ATOM a,b

Add the objectb to the objecta. This command is used to place ATOMs within
RESIDUEs, and RESIDUEs within UNITs. This command will work only ifb is not
contained by any other object.

The following example illustrates both theadd command and the way the tip3p water
molecule is created for the LEaP distribution tape.

> h1 = createAtom H1 HW 0.417

> h2 = createAtom H2 HW 0.417

> o = createAtom O OW -0.834

>

> set h1 element H

> set h2 element H

> set o element O

>

> r = createResidue TIP3

> add r h1

> add r h2

> add r o

>

> bond h1 o

> bond h2 o

> bond h1 h2

>

> TIP3 = createUnit TIP3

>

2/28/02

LEaP Commands Page 42

> add TIP3 r

> set TIP3.1 restype solvent

> set TIP3.1 imagingAtom TIP3.1.O

>

> zMatrix TIP3 {

> { H1 O 0.9572 }

> { H2 O H1 0.9572 104.52 }

> }

>

> saveOff TIP3 water.lib

Saving TIP3.

Building topology.

Building atom parameters.

3.6.2. addAtomTypes
addAtomTypes { { type element hybrid } { ... } ... }

STRING type

STRING element

STRING hybrid

Define element and hybridization for force field atom types. This command for the stan-
dard force fields can be seen in the defaultleaprc files. The STRINGs are most safely
rendered using quotation marks. If atom types are not defined, confusing messages about
hybridization can result when loading PDB files.

3.6.3. addIons
addIons unit ion1 numIon1 [ion2 numIon2]

UNIT unit

UNIT ion1

NUMBER numIon1

UNIT ion2

NUMBER numIon2

Adds counterions in a shell aroundunit using a Coulombic potential on a grid. If
numIon1 is 0, then theunit is neutralized. In this case,numIon1must be opposite in
charge tounit andnumIon2cannot be specified. If solvent is present, it is ignored in the
charge and steric calculations, and if an ion has a steric conflict with a solvent molecule,
the ion is moved to the center of said molecule, and the latter is deleted. (To avoid this
behavior, either solvate _after_ addions, or use addIons2.) Ions must be monoatomic.
This procedure is not guaranteed to globally minimize the electrostatic energy. When
neutralizing regular-backbone nucleic acids, the first cations will generally be placed
between phosphates, leaving the final two ions to be placed somewhere around the middle
of the molecule.The default grid resolution is 1 Å, extending from an inner radius of (
maxIonVdwRadius + maxSoluteAtomVdwRadius) to an outer radius 4 Å beyond. A
distance-dependent dielectric is used for speed.

2/28/02

LEaP Commands Page 43

3.6.4. addIons2
addIons2 unit ion1 numIon1 [ion2 numIon2]

UNIT unit

UNIT ion1

NUMBER numIon1

UNIT ion2

NUMBER numIon2

Same as addIons, except solvent and solute are treated the same.

3.6.5. addPath
addPath path

STRING path

Add the directory inpath to the list of directories that are searched for files specified by
other commmands. The following example illustrates this command.

> addPath /disk/howard

/disk/howard added to file search path.

After the above command is entered, the program will search for a file in this directory if
a file is specified in a command. Thus, if a user has a library named
"/disk/howard/rings.lib" and the user wants to load that library, one only needs to enter
load rings.lib and not load /disk/howard/rings.lib.

3.6.6. addPdbAtomMap
addPdbAtomMap list

LIST list

The atom Name Map is used to try to map atom names read from PDB files to atoms
within residue UNITs when the atom name in the PDB file does not match an atom in the
residue. This enables PDB files to be read in without extensive editing of atom names.
Typically, this command is placed in the LEaP start-up file, "leaprc", so that assignments
are made at the beginning of the session. The LIST is a LIST of LISTs. Each sublist
contains two entries to add to the Name Map. Each entry has the form:

{ string string }

where the firststring is the name within the PDB file, and the secondstring is the name in
the residue UNIT.

3.6.7. addPdbResMap
addPdbResMap list

LIST list

2/28/02

LEaP Commands Page 44

The Name Map is used to map RESIDUE names read from PDB files to variable names
within LEaP. Typically, this command is placed in the LEaP start-up file, "leaprc", so that
assignments are made at the beginning of the session. The LIST is a LIST of LISTs.
Each sublist contains two or three entries to add to the Name Map. Each entry has the
form:

{ double string string }

wheredoublecan be 0 or 1, the first string is the name within the PDB file, and the sec-
ond string is the variable name to which the first string will be mapped. To illustrate, the
following is part of the Name Map that exists when LEaP is started from the "leaprc" file
included in the distribution tape:

ADE --> DADE

: :

0 ALA --> NALA

0 ARG --> NARG

: :

1 ALA --> CALA

1 ARG --> CARG

: :

1 VAL --> CVAL

Thus, the residueALA will be mapped toNALA if it is the N-terminal residue andCALA
if it is found at the C-terminus. The above Name Map was produced using the following
(edited) command line:

> addPdbResMap {

> { 0 ALA NALA } { 1 ALA CALA }

> { 0 ARG NARG } { 1 ARG CARG }

: :

> { 0 VAL NVAL } { 1 VAL CVAL }

>

: :

> { ADE DADE }

: :

> }

3.6.8. alias
alias [string1 [string2]]

STRING string1

STRING string2

This command will add or remove anentry to the Alias Table or list entries in the Alias
Table. If both strings are present, then string1 becomes the alias to string2, the original
command. If only one string is used as an argument, then this string is removed from the
Alias Table. If no arguments are given with the command, the current aliases stored in

2/28/02

LEaP Commands Page 45

the Alias Table will be listed.

The proposed alias is first checked for conflict with the LEaP commands and it is rejected
if a conflict is found. A proposed alias will replace an existing alias with a warning being
issued. The alias can stand for more than a single word, but also as an entire string so the
user can quickly repeat entire lines of input.

3.6.9. bond
bond atom1 atom2 [order]

ATOM atom1

ATOM atom2

STRING order

Create a bond between atom1 and atom2. Both of these ATOMs must be contained by the
same UNIT. By default, the bond will be a single bond. By specifying "-", "=", "#", or ":"
as the optional argument,order, the user can specify a single, double, triple, or aromatic
bond, respectively. Example:

bond trx.32.SG trx.35.SG

3.6.10. bondByDistance
bondByDistance container [maxBond]

CONT container

NUMBER maxBond

Create single bonds between all ATOMs in container that are within maxBond angstroms
of each other. If maxBond is not specified then a default distance will be used. This
command is especially useful in building molecules. Example:

bondByDistance alkylChain

3.6.11. center
center container

UNIT/RESIDUE/ATOM container

Display the coordinates of the geometric center of the ATOMs within container. In the
following example, the alanine UNIT found in the amino acid library has been examined
by the center command:

> center ALA

The center is at: 4.04, 2.80, 0.49

2/28/02

LEaP Commands Page 46

3.6.12. charge
charge container

UNIT/RESIDUE/ATOM container

This command calculates the total charge of the ATOMs within container. The total
charges for both standard and, where applicable, perturbed systems are displayed. In the
following example, the alanine UNIT found in the amino acid library has been examined
by the charge command:

> charge ALA

Total unperturbed charge: 0.00

Total perturbed charge: 0.00

3.6.13. check
check unit [parms]

UNIT unit

PARMSET parms

This command can be used to check the UNIT for internal inconsistencies that could
cause problems when performing calculations. This is a very useful command that
should be used before a UNIT is saved withsaveAmberParm or its variants. Currently it
checks for the following possible problems:

• long bonds

• short bonds

• non-integral total charge of the UNIT.

• missing force field atom types

• close contacts (< 1.5 Å) between nonbonded ATOMs.

The user may collect any missing molecular mechanics parameters in a PARMSET for
subsequent editing. In the following example, the alanine UNIT found in the amino acid
library has been examined by thecheck command:

> check ALA

Checking ’ALA’....

Checking parameters for unit ’ALA’.

Checking for bond parameters.

Checking for angle parameters.

Unit is OK.

3.6.14. combine
variable = combine list

object variable

2/28/02

LEaP Commands Page 47

LIST list

Combine the contents of the UNITs within list into a single UNIT. The new UNIT is
placed in variable. This command is similar to thesequencecommand except it does not
link the ATOMs of the UNITs together. In the following example, the input and output
should be compared with the example given for thesequencecommand.

> tripeptide = combine { ALA GLY PRO }

Sequence: ALA

Sequence: GLY

Sequence: PRO

> desc tripeptide

UNIT name: ALA !! bug: this should be tripeptide!

Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<PRO 3>.A<C 13>

Contents:

R<ALA 1>

R<GLY 2>

R<PRO 3>

3.6.15. copy
newvariable = copy variable

object newvariable

object variable

Creates an exact duplicate of the object variable. Since newvariable is not pointing to the
same object as variable, changing the contents of one object will not alter the other
object. Example:

> tripeptide = sequence { ALA GLY PRO }

> tripeptideSol = copy tripeptide

> solvateBox tripeptideSol WATBOX216 8 2

In the above example, tripeptide is a separate object from tripeptideSol and is not sol-
vated. Had the user instead entered

> tripeptide = sequence { ALA GLY PRO }

> tripeptideSol = tripeptide

> solvateBox tripeptideSol WATBOX216 8 2

then both tripeptide and tripeptideSol would be solvated since they would both point to
the same object.

3.6.16. createAtom
variable = createAtom name type charge

ATOM variable

2/28/02

LEaP Commands Page 48

STRING name

STRING type

NUMBER charge

Return a new and empty ATOM with name, type, and charge as its atom name, atom type,
and electrostatic point charge. (See theaddcommand for an example of thecreateAtom
command.)

3.6.17. createParmset
variable = createParmset name

PARMSET variable

STRING name

Return a new and empty PARMSET with the name "name".

> newparms = createParmset pertParms

3.6.18. createResidue
variable = createResidue name

RESIDUE variable

STRING name

Return a new and empty RESIDUE with the name "name". (See theaddcommand for an
example of thecreateResiduecommand.)

3.6.19. createUnit
variable = createUnit name

UNIT variable

STRING name

Return a new and empty UNIT with the name "name". (See theadd command for an
example of thecreateUnitcommand.)

3.6.20. deleteBond
deleteBond atom1 atom2

ATOM atom1

ATOM atom2

Delete the bond between the ATOMs atom1 and atom2. If no bond exists, an error will be
displayed.

2/28/02

LEaP Commands Page 49

3.6.21. desc
desc variable

object variable

Print a description of the object. In the following example, the alanine UNIT found in the
amino acid library has been examined by thedesccommand:

> desc ALA

UNIT name: ALA

Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<ALA 1>.A<C 9>

Contents:

R<ALA 1>

Now, thedesccommand is used to examine the first residue (1) of the alanine UNIT:

> desc ALA.1

RESIDUE name: ALA

RESIDUE sequence number: 1

Type: protein

Connection atoms:

Connect atom 0: A<N 1>

Connect atom 1: A<C 9>

Contents:

A<N 1>

A<HN 2>

A<CA 3>

A<HA 4>

A<CB 5>

A<HB1 6>

A<HB2 7>

A<HB3 8>

A<C 9>

A<O 10>

Next, we illustrate the desc command by examining the ATOMN of the first residue (1)
of the alanine UNIT:

> desc ALA.1.N

ATOM

Name: N

Type: N

Charge: -0.463

Element: N

Atom flags: 20000|posfxd- posblt- posdrn- sel- pert-

notdisp- tchd- posknwn+ int - nmin- nbld-

Atom position: 3.325770, 1.547909, -0.000002

Atom velocity: 0.000000, 0.000000, 0.000000

2/28/02

LEaP Commands Page 50

Bonded to .R<ALA 1>.A<HN 2> by a single bond.

Bonded to .R<ALA 1>.A<CA 3> by a single bond.

Since the N ATOM is also the first atom of the ALA residue, the following command will
give the same output as the previous example:

> desc ALA.1.1

3.6.22. edit
edit unit

UNIT unit

In xleap this command creates a Unit Editor that contains the UNIT unit. The user can
view and edit the contents of the UNIT using the mouse. The command causes a copy of
the object to be edited. If the object that the user wants to edit is "null", then the edit
command assumes that the user wants to edit a new UNIT with a single RESIDUE within
it. PARMSETs can also be edited. In tleap this command prints an error message.

3.6.23. groupSelectedAtoms
groupSelectedAtoms unit name

UNIT unit

STRING name

Create a group within unit with the name, "name", using all of the ATOMs within the
UNIT that are selected. If the group has already been defined then overwrite the old
group. Thedesccommand can be used to list groups. Example:

groupSelectedAtoms TRP sideChain

An expression like "TRP@sideChain" returns a LIST, so any commands that require
LIST ’s can take advantage of this notation. After assignment, one can access groups
using the "@" notation. Examples:

select TRP@sideChain

center TRP@sideChain

The latter example will calculate the center of the atoms in the "sideChain" group. (see
theselectcommand for a more detailed example.)

3.6.24. help
help [string]

STRING string

2/28/02

LEaP Commands Page 51

This command prints a description of the command in string. If the STRING is not given
then a list of help topics is provided.

3.6.25. impose
impose unit seqlist internals

UNIT unit

LIST seqlist

LIST internals

The impose command allows the user to impose internal coordinates on the UNIT. The
list of RESIDUEs to impose the internal coordinates upon is in seqlist. The internal coor-
dinates to impose are in the LIST internals.

The command works by looking into each RESIDUE within the UNIT that is listed in the
seqlist argument and attempts to apply each of the internal coordinates within internals.
The seqlist argument is a LIST of NUMBERS that represent sequence numbers or ranges
of sequence numbers. Ranges of sequence numbers are represented by two element
LISTs that contain the first and last sequence number in the range. The user can specify
sequence number ranges that are larger than what is found in the UNIT. For example, the
range { 1 999 } represents all RESIDUEs in a 200 RESIDUE UNIT.

The internals argument is a LIST of LISTs. Each sublist contains a sequence of ATOM
names which are of type STRING followed by the value of the internal coordinate. An
example of the impose command would be:

impose peptide { 1 2 3 } {

{ N CA C N -40.0 }

{ C N CA C -60.0 }

}

This would cause the RESIDUE with sequence numbers 1, 2, and 3 within the UNIT pep-
tide to assume an alpha helical conformation. The command

impose peptide { 1 2 { 5 10 } 12 } {

{ CA CB 5.0 } }

will impose on the residues with sequence numbers 1, 2, 5, 6, 7, 8, 9, 10, and 12 within
the UNIT peptide a bond length of 5.0 angstroms between the alpha and beta carbons.
RESIDUEs without an ATOM named CB (like glycine) will be unaffected.

Three types of conformational change are supported: bond length changes, bond angle
changes, and torsion angle changes. If the conformational change involves a torsion
angle, then all dihedrals around the central pair of atoms are rotated. The entire list of
internals are applied to each RESIDUE.

3.6.26. list
List all of the variables currently defined. To illustrate, the following (edited) output
shows the variables defined when LEaP is started from the leaprc file included in the dis-
tribution tape:

2/28/02

LEaP Commands Page 52

> list

A

ACE ALA

ARG ASN

: :

VAL W

WAT Y

3.6.27. loadAmberParams
variable = loadAmberParams filename

PARMSET variable

STRING filename

Load an AMBER format parameter set file and place it in variable. All interactions
defined in the parameter set will be contained within variable. This command causes the
loaded parameter set to be included in LEaP ’s list of parameter sets that are searched
when parameters are required. General proper and improper torsion parameters are mod-
ified during the command execution with the LEaP general type "?" replacing the
AMBER general type "X".

> parm91 = loadAmberParams parm91X.dat

> saveOff parm91 parm91.lib

Saving parm91.

3.6.28. loadAmberPrep
loadAmberPrep filename [prefix]

STRING filename

STRING prefix

This command loads an AMBER PREP input file. For each residue that is loaded, a new
UNIT is constructed that contains a single RESIDUE and a variable is created with the
same name as the name of the residue within the PREP file. If the optional argument pre-
fix is provided it will be prefixed to each variable name; this feature is used to prefix
UATOM residues, which have the same names as AATOM residues with the string "U" to
distinguish them. Let us imagine that the following AMBER PREP input file exists:

0 0 2

Crown Fragment A

cra.res

CRA INT 0

CORRECT NOMIT DU BEG

0.0

1 DUMM DUM 0 0 0 0. 0. 0.

2 DUMM DUM 0 0 0 1.000 0. 0.

3 DUMM DUM 0 0 0 1.000 90. 0.

2/28/02

LEaP Commands Page 53

4 C1 CT M 0 0 0 1.540 112. 169.

5 H1A HC E 0 0 0 1.098 109.47 -110.0

6 H1B HC E 0 0 0 1.098 109.47 110.0

7 O2 OS M 0 0 0 1.430 112. -72.

8 C3 CT M 0 0 0 1.430 112. 169.

9 H3A HC E 0 0 0 1.098 109.47 -49.0

10 H3B HC E 0 0 0 1.098 109.47 49.0

CHARGE

0.2442 -0.0207 -0.0207 -0.4057 0.2442

-0.0207 -0.0207

DONE

STOP

This fragment can be loaded into LEaP using the following command:

> loadAmberPrep cra.in

Loaded UNIT: CRA

3.6.29. loadOff
loadOff filename

STRING filename

This command loads the OFF library within the file named filename. All UNITs and
PARMSETs within the library will be loaded. The objects are loaded into LEaP under the
variable names the objects had when they were saved. Variables already in existence that
have the same names as the objects being loaded will be overwritten. Any PARMSETs
loaded using this command are included in LEaP ’s library of PARMSETs that is
searched whenever parameters are required (The old AMBER format is used for PARM-
SETs rather than the OFF format in the default configuration). Example command line:

> loadOff parm91.lib

Loading library: parm91.lib

Loading: PARAMETERS

3.6.30. loadPdb
variable = loadPdb filename

STRING filename

object variable

Load a Protein Databank format file with the file name filename. The sequence numbers
of the RESIDUEs will be determined from the order of residues within the PDB file
AT OM records. This function will search the variables currently defined within LEaP for
variable names that map to residue names within the ATOM records of the PDB file. If a

2/28/02

LEaP Commands Page 54

matching variable name is found then the contents of the variable are added to the UNIT
that will contain the structure being loaded from the PDB file. Adding the contents of the
matching UNIT into the UNIT being constructed means that the contents of the matching
UNIT are copied into the UNIT being built and that a bond is created between the con-
nect0 ATOM of the matching UNIT and the connect1 ATOM of the UNIT being built.
The UNITs are combined in the same way UNITs are combined using the sequence com-
mand. As atoms are read from the ATOM records their coordinates are written into the
correspondingly named ATOMs within the UNIT being built. If the entire residue is read
and it is found that ATOM coordinates are missing, then external coordinates are built
from the internal coordinates that were defined in the matching UNIT. This allows LEaP
to build coordinates for hydrogens and lone-pairs which are not specified in PDB files.

> crambin = loadPdb 1crn

Loading PDB file

Matching PDB residue names to LEaP variables.

Mapped residue THR, term: 0, seq. number: 0 to: NTHR.

Residue THR, term: M, seq. number: 1 was not

found in name map.

Residue CYS, term: M, seq. number: 2 was not

found in name map.

Residue CYS, term: M, seq. number: 3 was not

found in name map.

Residue PRO, term: M, seq. number: 4 was not

found in name map.

: : :

Residue TYR, term: M, seq. number: 43 was not

found in name map.

Residue ALA, term: M, seq. number: 44 was not

found in name map.

Mapped residue ASN, term: 1, seq. number: 45 to: CASN.

Joining NTHR - THR

Joining THR - CYS

Joining CYS - CYS

Joining CYS - PRO

: : :

Joining ASP - TYR

Joining TYR - ALA

Joining ALA - CASN

The above edited listing shows the use of this command to load a PDB file for the protein
crambin. Several disulphide bonds are present in the protein and these bonds are indi-
cated in the PDB file. The loadPdb command, however, cannot read this information
from the PDB file. It is necessary for the user to explicitly define disulphide bonds using
thebondcommand.

3.6.31. loadPdbUsingSeq
loadPdbUsingSeq filename unitlist

STRING filename

2/28/02

LEaP Commands Page 55

LIST unitlist

This command reads a Protein Data Bank format file from the file named filename. This
command is identical toloadPdbexcept it does not use the residue names within the PDB
file. Instead the sequence is defined by the user in unitlist. For more details seeloadPdb.

> peptSeq = { UALA UASN UILE UVAL UGLY }

> pept = loadPdbUsingSeq pept.pdb peptSeq

In the above example, a variable is first defined as a LIST of united atom RESIDUEs. A
PDB file is then loaded, in this sequence order, from the file "pept.pdb".

3.6.32. logFile
logFile filename

STRING filename

This command opens the file with the file name filename as a log file. User input and all
output is written to the log file. Output is written to the log file as if the verbosity level
were set to 2. An example of this command is:

> logfile /disk/howard/leapTrpSolvate.log

3.6.33. measureGeom
measureGeom atom1 atom2 [atom3 [atom4]]

ATOM atom1

ATOM atom2

ATOM atom3

ATOM atom4

Measure the distance, angle, or torsion between two, three, or four ATOMs, respectively.

In the following example, we first describe the RESIDUE ALA of the ALA UNIT in
order to find the identity of the ATOMs. Next, the measureGeom command is used to
determine a distance, simple angle, and a dihedral angle. As shown in the example, the
AT OMs may be identified using atom names or numbers.

> desc ALA.ALA

RESIDUE name: ALA

RESIDUE sequence number: 1

Type: protein

Connection atoms:

Connect atom 0: A<N 1>

Connect atom 1: A<C 9>

Contents:

A<N 1>

A<HN 2>

2/28/02

LEaP Commands Page 56

A<CA 3>

A<HA 4>

A<CB 5>

A<HB1 6>

A<HB2 7>

A<HB3 8>

A<C 9>

A<O 10>

> measureGeom ALA.ALA.1 ALA.ALA.3

Distance: 1.45 angstroms

> measureGeom ALA.ALA.1 ALA.ALA.3 ALA.ALA.5

Angle: 111.10 degrees

> measureGeom ALA.ALA.N ALA.ALA.CA ALA.ALA.C ALA.ALA.O

Torsion angle: 0.00 degrees

3.6.34. quit
Quit the LEaP program.

3.6.35. remove
remove a b

CONT a

CONT b

Remove the object b from the object a. If b is not contained by a then an error message
will be displayed. This command is used to remove ATOMs from RESIDUEs, and
RESIDUEs from UNITs. If the object represented by b is not referenced by some variable
name then it will be destroyed.

> dipeptide = combine { ALA GLY }

Sequence: ALA

Sequence: GLY

> desc dipeptide

UNIT name: ALA !! bug: this should be dipeptide!

Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<GLY 2>.A<C 6>

Contents:

R<ALA 1>

R<GLY 2>

> remove dipeptide dipeptide.2

> desc dipeptide

UNIT name: ALA !! bug: this should be dipeptide!

Head atom: .R<ALA 1>.A<N 1>

Tail atom: null

Contents:

R<ALA 1>

2/28/02

LEaP Commands Page 57

3.6.36. saveAmberParm
saveAmberParm unit topologyfilename coordinatefilename

UNIT unit

STRING topologyfilename

STRING coordinatefilename

Save the AMBER/SPASMS topology and coordinate files for the UNIT into the files
named topologyfilename and coordinatefilename respectively. This command will cause
LEaP to search its list of PARMSETs for parameters defining all of the interactions
between the ATOMs within the UNIT. This command produces topology files and coordi-
nate files that are identical in format to those produced by AMBER PARM and can be
read into AMBER and SPASMS for calculations. The output of this operation can be
used for minimizations, dynamics, and thermodynamic perturbation calculations.

In the following example, the topology and coordinates from the all_amino94.lib UNIT
ALA are generated:

> saveamberparm ALA ala.top ala.crd

Building topology.

Building atom parameters.

Building bond parameters.

Building angle parameters.

Building proper torsion parameters.

Building improper torsion parameters.

Building H-Bond parameters.

3.6.37. saveAmberParmPol
saveAmberParmPol unit topologyfilename coordinatefilename

UNIT unit

STRING topologyfilename

STRING coordinatefilename

Like sav eAmberParm, but includes atomic polarizabilities in the topology file for use
with IPOL=1 in Sander. The polarizabilities are according to atom type, and are defined
in the ’mass’ section of theparm.dator frcmodfile. Note: charges are normally scaled
when polarizabilities are used - see scaleCharges for an easy way of doing this.

3.6.38. saveAmberParmPert
saveAmberParmPert unit topologyfilename coordinatefilename

UNIT unit

STRING topologyfilename

STRING coordinatefilename

This command is the same assaveAmberParm, except a perturbation topology file is writ-
ten instead of a plain minimization/dynamics one.

2/28/02

LEaP Commands Page 58

Save the AMBER topology and coordinate files for the UNIT into the files named topolo-
gyfilename and coordinatefilename respectively. This command will cause LEaP to
search its list of PARMSETs for parameters defining all of the interactions between the
AT OMs within the UNIT. This command produces topology files and coordinate files
that are identical in format to those produced by AMBER PARM and can be read into
gibbs for perturbation calculations.

> saveAmberParmPert pert pert.leap.top pert.leap.crd

Building topology.

Building atom parameters.

Building bond parameters.

Building angle parameters.

Building proper torsion parameters.

Building improper torsion parameters.

Building H-Bond parameters.

3.6.39. saveAmberParmPolPert
saveAmberParmPolPert unit topologyfilename coordinatefile-
name

UNIT unit

STRING topologyfilename

STRING coordinatefilename

Like sav eAmberParmPert, but includes atomic polarizabilities in the topology file for use
with IPOL=1 in Gibbs. The polarizabilities are according to atom type, and are defined in
the ’mass’ section of the parm.dat or frcmod file. Note: charges are normally scaled when
polarizabilities are used - see scaleCharges for an easy way of doing this.

3.6.40. saveOff
saveOff object filename

object object

STRING filename

The saveOff command allows the user to save UNITs and PARMSETs to a file named
filename. The file is written using the Object File Format (off) and can accommodate an
unlimited number of uniquely named objects. The names by which the objects are stored
are the variable names specified in the argument of this command. If the filefilename
already exists then the new objects will be added to the file. If there are objects within
the file with the same names as objects being saved then the old objects will be overwrit-
ten. The argument object can be a single UNIT, a single PARMSET, or a LIST of mixed
UNITs and PARMSETs. (See theadd command for an example of thesaveOffcom-
mand.)

2/28/02

LEaP Commands Page 59

3.6.41. savePdb
savePdb unit filename

UNIT unit

STRING filename

Write UNIT to the filefilenameas a PDB format file. In the following example, the PDB
file from the "all_amino94.lib" UNIT ALA is generated:

> savepdb ALA ala.pdb

3.6.42. scaleCharges
scaleCharges container scale_factor

UNIT/RESIDUE/ATOM container

NUMBER scale_factor

This command scales the charges in the object by _scale_factor_, which must be > 0. It
is useful for building systems for use with polarizable atoms, e.g.

> x = copy solute

> scaleCharges x 0.8

> y = copy WATBOX216

> scalecharges y 0.875

> solvatebox x y 10

> saveamberparmpol x x.top x.crd

3.6.43. sequence
variable = sequence list

UNIT variable

LIST list

The sequence command is used to create a new UNIT by combining the contents of a
LIST of UNITs. The first argument is a LIST of UNITs. A new UNIT is constructed by
taking each UNIT in the sequence in turn and copying its contents into the UNIT being
constructed. As each new UNIT is copied, a bond is created between the tail ATOM of
the UNIT being constructed and the head ATOM of the UNIT being copied, if both con-
nect ATOMs are defined. If only one is defined, a warning is generated and no bond is
created. If neither connection ATOM is defined then no bond is created. As each
RESIDUE is copied into the UNIT being constructed it is assigned a sequence number
which represents the order the RESIDUEs are added. Sequence numbers are assigned to
the RESIDUEs so as to maintain the same order as was in the UNIT before it was copied
into the UNIT being constructed. This command builds reasonable starting coordinates
for all ATOMs within the UNIT; it does this by assigning internal coordinates to the link-
ages between the RESIDUEs and building the external coordinates from the internal

2/28/02

LEaP Commands Page 60

coordinates from the linkages and the internal coordinates that were defined for the indi-
vidual UNITs in the sequence.

> tripeptide = sequence { ALA GLY PRO }

Sequence: ALA

Sequence: GLY

Joining ALA - GLY

Sequence: PRO

Joining GLY - PRO

> desc tripeptide

UNIT name: ALA !! bug: this should be tripeptide!

Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<PRO 3>.A<C 13>

Contents:

R<ALA 1>

R<GLY 2>

R<PRO 3>

3.6.44. set
set default variable value

STRING variable

STRING value

or
set container parameter object

CONT container

STRING parameter

object object

This command sets the values of some global parameters (when the first argument is
"default") or sets various parameters associated with container. The following parameters
can be set within LEaP:

For "default" parameters

PBradii Set to "bondi" to use Bondi radii and Tinker screening parameters for gen-
eralized Born calculations. These values are recommended when
gblambda> 1 in thesanderinput.

Set to "mbondi" to use modified Bondi radii (where the hydrogens are
modified from the Bondi values). Here the radius of hydrogen bonded to
oxygen or sulfur is set to 0.8; hydrogen bonded to carbon is 1.3; hydrogen
bonded to nitrogen is 1.3. These parameters are the default, and are those
used by Tsui & Case [28], and are the recommended ones whengblambda
= 1 in thesanderinput. The code in Amber (version 6) used values like
the "mbondi" values, except that the radius for hydrogen bonded to nitro-
gen was 1.2; you can use the "amber6" keyword forPBradii to use these
earlier values [29], but this is only recommended if you want to check

2/28/02

LEaP Commands Page 61

results against those from Amber6, or if you need to extend a simulation
started with the earlier parameters.

Set to "pbamber" to use radii optimized by Huo and Kollman for use in PB
calculations with Amber charges. [need citations here...]

Set to "gbjsb" or "mgbjsb" to use the radii and screening parameters
derived by Jayaram, Sprous and Beveridge [30] for the "regular" or "modi-
fied" GB models, respectively. These are the parameters that should be
used whenigb = 3 or 4 insander.

The values specified above are put into the RADII and SCREENING sec-
tions of theprmtopfile, and could be edited by hand from there if further
changes were desired.

OldPrmtopFormat
If set to "on", the saveAmberParm command will write a prmtop file in the
format used in Amber6 and before; if set to "off" (the default), it will use
the new format.

Dielectric If set to "distance" (the default), electrostatic calculations in LEaP will use
a distance-dependent dielectric; if set to "constant", and constant dielectric
will be used.

PdbWriteCharges
If set to "on", atomic charges will be placed in the "B-factor" field of pdb
files saved with the savePdb command; if set to "off" (the default), no such
charges will be written.

For ATOMs:

name A unique STRING descriptor used to identify ATOMs.

type This is a STRING property that defines the AMBER force field atom type.

charge The charge property is a NUMBER that represents the ATOM’s electro-
static point charge to be used in a molecular mechanics force field.

position This property is a LIST of NUMBERS containing three values: the (X, Y,
Z) Cartesian coordinates of the ATOM.

pertName The STRING is a unique identifier for an ATOM in its final state during a
Free Energy Perturbation calculation.

pertType The STRING is the AMBER force field atom type of a perturbed ATOM.

pertCharge This NUMBER represents the final electrostatic point charge on an ATOM
during a Free Energy Perturbation.

For RESIDUEs:

connect0 This defines an ATOM that is used in making links to other RESIDUEs. In
UNITs containing single RESIDUEs, the RESIDUEsS connect0 ATOM is
usually defined as the UNIT’s head ATOM.

connect1 This is an ATOM property which defines an ATOM that is used in making
links to other RESIDUEs. In UNITs containing single RESIDUEs, the
RESIDUEsS connect1 ATOM is usually defined as the UNIT’s tail ATOM.

2/28/02

LEaP Commands Page 62

connect2 This is an ATOM property which defines an ATOM that can be used in
making links to other RESIDUEs. In amino acids, the convention is that
this is the ATOM to which disulphide bridges are made.

restype This property is a STRING that represents the type of the RESIDUE. Cur-
rently, it can have one of the following values: "undefined", "solvent",
"protein", "nucleic", or "saccharide".

name This STRING property is the RESIDUE name.

For UNITs:

head Defines the ATOM within the UNIT that is connected when UNITs are
joined together: the tail ATOM of one UNIT is connected to the head
AT OM of the subsequent UNIT in any sequence.

tail Defines the ATOM within the UNIT that is connected when UNITs are
joined together: the tail ATOM of one UNIT is connected to the head
AT OM of the subsequent UNIT in any sequence.

box The property defines the bounding box of the UNIT. If it is defined as null
then no bounding box is defined. If the value is a single NUMBER then
the bounding box will be defined to be a cube with each side being NUM-
BER of angstroms across. If the value is a LIST then it must be a LIST
containing three numbers, the lengths of the three sides of the bounding
box.

cap The property defines the solvent cap of the UNIT. If it is defined as null
then no solvent cap is defined. If the value is a LIST then it must contain
four numbers, the first three define the Cartesian coordinates (X, Y, Z) of
the origin of the solvent cap in angstroms, the fourth NUMBER defines the
radius of the solvent cap in angstroms.

3.6.45. setBox
setBox unit vdw OR centers [buffer OR buffer_xyz_list]

UNIT unit

The setBox command adds a periodic box to the UNIT, turning it into a periodic system
for the simulation programs. It does not add any solvent to the system. The choice of
"vdw" or "centers" determines whether the box encloses the entire atoms or just the atom
centers - use "centers" if the system has been previously equilibrated as a periodic box.
See the solvateBox command for a description of the buffer variable, which extends
either type of box by an arbitrary amount.

3.6.46. solvateBox
solvateBox solute solvent buffer [iso] [closeness]

UNIT solute

UNIT solvent

2/28/02

LEaP Commands Page 63

object buffer

NUMBER closeness

The solvateBoxcommand creates a rectangular parallelopiped solvent box around the
solute UNIT. The solute UNIT is modified by the addition of solvent RESIDUEs. (For
most liquid state simulations, thesolvateOctcommand discussed below is probably a bet-
ter choice.)

The normal choice for a TIP3 _solvent_ UNIT is WATBOX216, which is a snapshot from
a room-temperature equilibration for this model. If you want to solvate with other water
models (say TIP4P), try the following:(a) solvate the system with WATBOX216, using
the default TIP3 model;(b) useambpdbto convert yourprmtopfile to Brookhaven for-
mat; (c) restart LEaP, choose the TIP4P water model (instructions are in the Database
chapter), then use loadPdb to bring back in the system you have created.

Note that equilibration will always be required to bring the artificial box to reasonable
density, since Van der Waals voids remain due to the impossibility of natural packing of
solvent around the solute and at the edges of the box. First, equilibrate the system at con-
stant volume to the temperature you want, then turn on constant pressure to adjust the
system density to the desired value.

The solvent UNIT is copied and repeated in all three spatial directions to create a box
containing the entire solute and a buffer zone defined by the buffer argument. The buffer
argument defines the distance, in angstroms, between the wall of the box and the closest
AT OM in the solute. If the buffer argument is a single NUMBER, then the buffer dis-
tance is the same for the x, y, and z directions, unless the ’iso’ option is used to make the
box cubic, with the shortest box clearance = buffer. If the buffer argument is a LIST of
three NUMBERS, then the NUMBERs are applied to the x, y, and z axes respectively. As
the larger box is created and superimposed on the solute, solvent molecules overlapping
the solute are removed.

The optional closeness parameter can be used to control how close, in angstroms, solvent
AT OMs can come to solute ATOMs. The default value of the closeness argument is 1.0.
Smaller values allow solvent ATOMs to come closer to solute ATOMs. The criterion for
rejection of overlapping solvent RESIDUEs is if the distance between any solvent ATOM
to the closest solute ATOM is less than the sum of the ATOMs VANDERWAAL distances
multiplied by the closeness argument.

This command modifies the _solute_ UNIT in several ways. First, the coordinates of the
AT OMs are modified to move the center of a box enclosing the Van der Waals radii of the
atoms to the origin. Secondly, the UNIT is modified by the addition of _solvent_
RESIDUEs copied from the _solvent_ UNIT. Finally, the box parameter of the new sys-
tem (still named for the _solute_) is modified to reflect the fact that a periodic, rectilinear
solvent box has been created around it.

In this example, it is assumed that the file solvents.lib, containing WATBOX216, has been
loaded already (as is done by the default leaprc):

>> mol = loadpdb my.pdb

>> solvateBox sol WATBOX216 10

Solute vdw bounding box: 7.512 12.339 12.066

Total bounding box for atom centers: 27.512 32.339 32.066

Solvent unit box: 18.774 18.774 18.774

2/28/02

LEaP Commands Page 64

Total vdw box size: 30.995 35.538 35.416 angstroms.

Total mass 14470.768 amu, Density 0.616 g/cc

Added 785 residues.

Again, note that the density of 0.601 g/cc points to the need for constant pressure equili-
bration. (See the discussion of equilibration in the Q&A section of the amber web.)

3.6.47. solvateCap
solvateCap solute solvent position radius [closeness]

UNIT solute

UNIT solvent

object position

NUMBER radius

NUMBER closeness

The solvateCap command creates a solvent cap around the solute UNIT. The solute
UNIT is modified by the addition of solvent RESIDUEs. The solvent box will be
repeated in all three spatial directions to create a large solvent sphere with a radius of
radius angstroms.

The position argument defines where the center of the solvent cap is to be placed. If posi-
tion is a RESIDUE, ATOM, or a LIST of UNITs, RESIDUEs, or ATOMs, then the geo-
metric center of the ATOMs within the object will be used as the center of the solvent cap
sphere. If position is a LIST containing three NUMBERS, then the position argument
will be treated as a vector that defines the position of the solvent cap sphere center.

The optional closeness parameter can be used to control how close, in angstroms, solvent
AT OMs can come to solute ATOMs. The default value of the closeness argument is 1.0.
Smaller values allow solvent ATOMs to come closer to solute ATOMs. The criterion for
rejection of overlapping solvent RESIDUEs is if the distance between any solvent ATOM
to the closest solute ATOM is less than the sum of the ATOMs VANDERWAAL’s dis-
tances multiplied by the closeness argument.

This command modifies the solute UNIT in several ways. First, the UNIT is modified by
the addition of solvent RESIDUEs copied from the solvent UNIT. Secondly, the cap
parameter of the UNIT solute is modified to reflect the fact that a solvent cap has been
created around the solute.

>> mol = loadpdb my.pdb

>> solvateCap mol WATBOX216 mol.2.CA 8.0 2.0

Added 3 residues.

3.6.48. solvateDontClip
solvateDontClip solute solvent buffer [closeness]

UNIT solute

UNIT solvent

object buffer

NUMBER closeness

2/28/02

LEaP Commands Page 65

This command is identical to thesolvateBoxcommand except that the solvent box that is
created is not clipped to the boundary of the buffer region. This command forms larger
solvent boxes than doessolvateBoxbecause it does not cause solvent that is outside the
buffer region to be discarded. This helps to preserve the periodic structure of properly
constructed solvent boxes, preventing hot-spots from forming.

>> mol = loadpdb my.pdb

>> solvateDontClip mol WATBOX216 10

Solute vdw bounding box: 7.512 12.339 12.066

Total bounding box for atom centers: 27.512 32.339 32.066

Solvent unit box: 18.774 18.774 18.774

Total vdw box size: 41.120 40.899 41.075 angstroms.

Total mass 30595.088 amu, Density 0.735 g/cc

Added 1680 residues.

Note the larger number of waters added, compared to solvateBox; in the case of this
solute and choice of buffer, the overall box size is increased by about 10 angstroms in
each direction.

3.6.49. solvateOct
solvateOct solute solvent buffer [aniso] [closeness]

UNIT _solute_

UNIT _solvent_

object _buffer_

NUMBER _closeness_

The solvateOct command is the same as solvateBox, except the corners of the box are
sliced off, resulting in a truncated octahedron, which typically gives a more uniform dis-
tribution of solvent around the solute. In solvateOct, when a LIST is given for the buffer
argument, four numbers are given instead of three, where the fourth is the diagonal clear-
ance. If 0.0 is given as the fourth number, the diagonal clearance resulting from the appli-
cation of the x,y,z clearances is reported. If a non-0 value is given, this may require scal-
ing up the other clearances, which is also reported.

Unless the ’aniso’ option is used, an isometric truncated octahedron is produced and
rotated to an orientation used by thesanderPME code. (Note: don’t use the ’aniso’
option unless you are sure you know what you are doing; it is only there for expert back-
ward compatibility, and probably has no real use anymore.)

3.6.50. solvateShell
solvateShell solute solvent thickness [closeness]

UNIT solute

UNIT solvent

NUMBER thickness

NUMBER closeness

The solvateShellcommand adds a solvent shell to the solute UNIT. The resulting

2/28/02

LEaP Commands Page 66

solute/solvent UNIT will be irregular in shape since it will reflect the contours of the
solute. The solute UNIT is modified by the addition of solvent RESIDUEs. The solvent
box will be repeated in three directions to create a large solvent box that can contain the
entire solute and a shell thickness angstroms thick. The solvent RESIDUEs are then
added to the solute UNIT if they lie within the shell defined by thickness and do not over-
lap with the solute ATOMs. The optional closeness parameter can be used to control how
close solvent ATOMs can come to solute ATOMs. The default value of the closeness
argument is 1.0. Please see thesolvateBoxcommand for more details on the closeness
parameter.

>> mol = loadpdb my.pdb

>> solvateShell mol WATBOX216 8.0

Solute vdw bounding box: 7.512 12.339 12.066

Total bounding box for atom centers: 23.512 28.339 28.066

Solvent unit box: 18.774 18.774 18.774

Added 147 residues.

3.6.51. source
source filename

STRING filename

This command executes commands within a text file. To display the commands as they
are read, see theverbositycommand.

3.6.52. transform
transform atoms, matrix

CONT atoms

LIST matrix

Transform all of the ATOMs within atoms by the (3× 3) or (4× 4) matrix represented
by the nine or sixteen NUMBERS in the LIST of LISTsmatrix. The general matrix
looks like:

r11 r12 r13 -tx

r21 r22 r23 -ty

r31 r32 r33 -tz

0 0 0 1

The matrix elements represent the intended symmetry operation. For example, a reflec-
tion in the (x, y) plane would be produced by the matrix:

1 0 0

0 1 0

0 0 -1

This reflection could be combined with a six angstrom translation along the x-axis by

2/28/02

LEaP Commands Page 67

using the following matrix.

1 0 0 6

0 1 0 0

0 0 -1 0

0 0 0 1

In the following example, wrB is transformed by an inversion operation:

transform wrpB {

{ -1 0 0 }

{ 0 -1 0 }

{ 0 0 -1 }

}

3.6.53. translate
translate atoms direction

CONT atoms

LIST direction

Translate all of the ATOMs within atoms by the vector defined by the three NUMBERS
in the LISTdirection.

Example:

translate wrpB { 0 0 -24.53333 }

3.6.54. verbosity
verbosity level

NUMBER level

This command sets the level of output that LEaP provides the user. A value of 0 is the
default, providing the minimum of messages. A value of 1 will produce more output, and
a value of 2 will produce all of the output of level 1 and display the text of the script lines
executed with thesourcecommand. The following line is an example of this command:

> verbosity 2

Verbosity level: 2

3.6.55. zMatrix
zMatrix object zmatrix

CONT object

LIST matrix

2/28/02

LEaP Commands Page 68

ThezMatrix command is quite complicated. It is used to define the external coordinates
of ATOMs within object using internal coordinates. The second parameter of thezMatrix
command is a LIST of LISTs; each sub-list has several arguments:

{ a1 a2 bond12 }

This entry defines the coordinate of a1 by placing it bond12 angstroms along the x-axis
from ATOM a2. If AT OM a2 does not have coordinates defined then ATOM a2 is placed
at the origin.

{ a1 a2 a3 bond12 angle123 }

This entry defines the coordinate of a1 by placing it bond12 angstroms away from ATOM
a2 making an angle of angle123 degrees between a1, a2 and a3. The angle is measured in
a right hand sense and in the x-y plane. AT OMs a2 and a3 must have coordinates
defined.

{ a1 a2 a3 a4 bond12 angle123 torsion1234 }

This entry defines the coordinate of a1 by placing it bond12 angstroms away from ATOM
a2, creating an angle of angle123 degrees between a1, a2, and a3, and making a torsion
angle of torsion1234 between a1, a2, a3, and a4.

{ a1 a2 a3 a4 bond12 angle123 angle124 orientation }

This entry defines the coordinate of a1 by placing it bond12 angstroms away from ATOM
a2, making angles angle123 between ATOMs a1, a2, and a3, and angle124 between
AT OMs a1, a2, and a4. The argument orientation defines whether the ATOM a1 is above
or below a plane defined by the ATOMs a2, a3, and a4. If orientation is positive then a1
will be placed in such a way so that the inner product of (a3-a2) cross (a4-a2) with
(a1-a2) is positive. Otherwise a1 will be placed on the other side of the plane. This
allows the coordinates of a molecule like fluoro-chloro-bromo-methane to be defined
without having to resort to dummy atoms.

The first arguments within thezMatrix entries (a1, a2, a3, a4) are either ATOMs or
STRINGS containing names of ATOMs within object. The subsequent arguments are all
NUMBERS. Any ATOM can be placed at the a1 position, even those that have coordi-
nates defined. This feature can be used to provide an endless supply of dummy atoms, if
they are required. A predefined dummy atom with the name "*" (a single asterisk, no
quotes) can also be used.

There is no order imposed in the sub-lists. The user can place sub-lists in arbitrary order,
as long as they maintain the requirement that all atoms a2, a3, and a4 must have external
coordinates defined, except for entries that define the coordinate of an ATOM using only
a bond length. (See theaddcommand for an example of thezMatrixcommand.)

2/28/02

Antechamber Page 69

4. Antechamber
This is a set of tools to generate "prep" input files for organic molecules, which can then be

read into LEaP. The Antechamber suite was written by Junmei Wang, August, 2001, and is
designed to be used in conjunction with the "general Amber force field" (gaff.dat). References
are "Antechamber, an Accessory Software Package for Molecular Mechanical Calculations", by
Junmei Wang, Wei Wang and Peter A. Kollman, (manuscript in preparation), and "Development
of General AMBER Force Field (GAFF)", by Junmei Wang, Romain M. Wolf, David A. Case
and Peter A. Kollman" (manuscript in preparation).

Molecular mechanics are the key component in the armamentarium used by computational
chemists for rational drug design and many other tasks. Force fields are the cornerstone of molec-
ular mechanics. A successful force field for drug design should work well both for biological
macromolecules and the organic molecules. The Amber force field has enjoyed a good reputation
for its performance in studies of proteins and nucleic acids. However, the fact that Amber has had
only limited parameters for organic molecules has kept it from being widely used in ligand-bind-
ing or drug design applications. Antechamber is based on a new, general Amber force field
(GAFF) that covers most pharmaceutical molecules, and which is as compatible as possible with
the traditional Amber force fields.

Like the traditional Amber force fields, GAFF uses a simple harmonic function form for
bonds and angles. Unlike traditional Amber, atom types in GAFF are more general and cover
most of the organic chemical space. In total there are 35 atom types. The charge methods used in
GAFF are HF/6-31G* RESP and AM1-BCC [31]. All of the force field parameterizations were
carried out with HF/6-31G* RESP charges. However, in most cases, AM1-BCC, which was
parameterized to reproduce HF/6-31G* RESP charges, is recommended because of its simplicity
and efficiency.

The van der Waals parameters are same as those used by the traditional AMBER force field.
The equilibrium bond lengths and bond angles come from statistics derived from the Cambridge
Structural Database, and ab initio calculations at the MP2/6-31G* level. The force constants for
bonds and angles were estimated using empirical models, and the parameters in these models
were trained using the force field parameters in the traditional Amber force field. General tor-
sional angle parameters were extensively applied in order to reduce the huge number of torsional
angle parameters to be parameterized. The force constants and phase angles were optimized using
our PARMSCAN package [32], with an aim to reproduce the rotational profiles depicted by high-
level ab initio calculations [geometry optimizations at the MP2/6-31G* level, followed by single
point calculations at MP4/6-311G(d,p)].

Tw o main tests have been carried out (so far) to evaluate GAFF. In the first test, GAFF was
used to optimize the crystal structures of 75 molecules, which were also used by Tom Halgren to
evaluate his MMFF [33]. We achieved comparable performance to that of MMFF. The RMS
deviations of bond length and bond angle are 0.025 Å and 2.4o, respectively. This is encouraging,
given that the functional form of GAFF is much simpler than that of MMFF. In a second test,
GAFF was used to calculate the intermolecular energies of 26 base pairs, which have high-level
ab initio energies available. The performance of GAFF was comparable to that of traditional
Amber force fields (ff94andff99).

By design, GAFF is a complete force field (so that missing parameters rarely occur), it cov-
ers almost all the organic chemical space, and it is compatible with the Amber macromolecular

2/28/02

Antechamber Page 70

force fields. We believe that the combination of GAFF with traditional Amber will offer an useful
molecular mechanical tool for rational drug design, especially for things like binding free energy
calculations.

4.1. Principal programs
The antechamberprogram itself is the main program for Antechamber: if your molecule

falls in fairly broad categories, this should be all you need to convert an input pdb file into a "prep
input" file ready for LEaP.

If there are missing parameters afterantechamberis finished, you may want to runparmchk
to generate afrcmod template that will assist you in generating the needed parameters. Some
additional suggestions for parameters can be generated by runningparmcal.

4.1.1. antechamber
This is the most important program in the package. It can perform many file conversions,

and can also assign atomic charges and atom types. As required by the input,antechamber
executes the following programs:mopac, atomtype, bcc, bcctype, espgen, respgenandprepgen. It
may also generate lots of intermediate files (all in capital letters). If there is a problem with
antechamber, you may want to run its subprograms separately; these are described below.

Usage: antechamber

-i input file name

-o output file name

-a additional file name, optional

-fi input file format

-fo output file format

-fa additional file format, optional

-c charge method, optional

-cf charge filename, optional

-nc net molecular charge (integer)

-m multiplicity (2S+1), default is 1

-rn residue name, default is MOL

-rf residue topology file name in prep input file,

default is molecule.res

-mp mopac program name, default is mopac.sh

-mk mopac keywords (enclose in quotes)

-gk gaussian keywords (enclose in quotes)

-at atom type: can be gaff or amber, default is gaff

-j atom type and bond type prediction index, optional

both: assign both atom and bond types, default

at: assign only atom types

bt: assign only bond types

-s status information, can be 0 (brief) ,1 (the

default) and 2(verbose)

-pf remove intermediate files: can be yes (y) or no

(n), default is no

2/28/02

Antechamber Page 71

(-i, -o,-fi, and -fo must be specified; other arguments are optional)

List of the File Formats

file format type abbre. index | file format type abbre. index

--

Antechamber ac 1 | Sybyl Mol2 mol2 2

PDB pdb 3 | Modified PDBl mpdb 4

AMBER PREP (int) prepi 5 | AMBER PREP (car) prepc 6

Gaussian Z-Matrix gzmat 7 | Gaussian Cartesian gcrt 8

Mopac Internal mopint 9 | Mopac Cartesian mopcrt 10

Gaussian Output gout 11 | Mopac Output mopout 12

Alchemy alc 13 | CSD csd 14

MDL mdl 15 | Hyper hin 16

AMBER Restart rst 17

--

List of the Charge Methods

charge method abbre. index | charge method abbre. index

RESP resp 1 | AM1-BCC bcc 2

CM2 (Kollman) esp 3 | ESP (Kollman) esp 4

Mulliken mul 5 | Gasteiger gas 6

Read in Charge rc 7 | Write out charge wc 8

--

Examples:

antechamber -i g98.out -fi gout -o sustiva_resp.prep -fo prepi -c resp

antechamber -i g98.out -fi gout -o sustiva_bcc.prep -fo prepi -c bcc

antechamber -i g98.out -fi gout -o sustiva_gas.prep -fo prepi -c gas

antechamber -i g98.out -fi gout -o sustiva_cm2.prep -fo prepi -c cm2

antechamber -i g98.out -fi gout -o sustiva.ac -fo ac

antechamber -i sustiva.ac -fi ac -o sustiva.mpdb -fo mpdb

antechamber -i sustiva.ac -fi ac -o sustiva.mol2 -fo mol2

antechamber -i sustiva.mol2 -fi mol2 -o sustiva.gzmat -fo gzmat

antechamber -i sustiva.ac -fi ac -o sustiva_gas.ac -fo ac -c gas

The -rn line specifies the residue name to be used when creating Amber prep files; thus
must be one to three characters long. The-at flag is used to specify whether atom types are to be
created for the general Amber force field (gaff) or for atom types consistent with parm94.dat and
parm99.dat (amber). Atom types for gaff are all lower case, and the Amber atom types are
always upper case. If you are usingantechamberto create a modified residue for use with the
standard Amber parm94/parm99 force fields, you should set this flag toamber ; if you are look-
ing at a more arbitrary molecule, set this togaff , even if you plan to use this as a ligand bound

2/28/02

Antechamber Page 72

to a macromolecule described by the Amber force fields. Note thatparmchkonly creates parame-
ters for the gaff force field.

4.1.2. parmchk
Parmchk reads in an ac file or a prep input file as well as a force field file (gaff.dat in

$AMBERHOME/dat/leap/parm). It writes out a frcmod file for the missing parameters. For each
atom type, an atom type corresponding file (ATCOR.DAT) lists its replaceable general atom type.
Be careful to those problem parameters indicated with "ATTN, need revision".

Usage: parmchk -i input

-o frcmod

-f format (prepi, prepc, ac)

-p ff parmfile

-c atom type correspondence file

(default is ATCOR.DAT)

Example:

parmchk -i sustiva.prep -f prepi -o frcmod

This command reads in sustiva.prep and find the missing force field parameters listed in frcmod.

4.1.3. parmcal
Parmcal is an interactive program to calculate the bond length and bond angle parameters,

according to rules outlined incite paper here.

Please select:

1. calculate the bond length parameter: A-B

2. calculate the bond angle parameter: A-B-C

3. exit

4.2. A simple example for antechamber
The most common use of theantechamberprogram suite is to prepare input files for LEaP,

starting from a three-dimensional structure, as found in a pdb file. Theantechambersuite auto-
mates the process of developing a charge model, assigning atom types, and partially automates
the process of developing parameters for the various combinations of atom types found in the
molecule.

As with any automated procedure, care should be taken to examine the output. Further-
more, the procedure, although carefully tested, has not been widely used by lots of people, so
users should certainly be on the lookout for unusual or incorrect behavior.

Suppose you have a PDB-format file for your ligand, say thiophenol, that looks like this:

2/28/02

Antechamber Page 73

ATOM 1 CG TP 1 -1.959 0.102 0.795 1.00 0.00

ATOM 2 CD1 TP 1 -1.249 0.602 -0.303 1.00 0.00

ATOM 3 CD2 TP 1 -2.071 0.865 1.963 1.00 0.00

ATOM 4 CE1 TP 1 -0.646 1.863 -0.234 1.00 0.00

ATOM 5 C6 TP 1 -1.472 2.129 2.031 1.00 0.00

ATOM 6 CZ TP 1 -0.759 2.627 0.934 1.00 0.00

ATOM 7 HE2 TP 1 -1.558 2.719 2.931 1.00 0.00

ATOM 8 S15 TP 1 -2.782 0.365 3.060 1.00 0.00

ATOM 9 H19 TP 1 -3.541 0.979 3.274 1.00 0.00

ATOM 10 H29 TP 1 -0.787 -0.043 -0.938 1.00 0.00

ATOM 11 H30 TP 1 0.373 2.045 -0.784 1.00 0.00

ATOM 12 H31 TP 1 -0.092 3.578 0.781 1.00 0.00

ATOM 13 H32 TP 1 -2.379 -0.916 0.901 1.00 0.00

(This file may be found at$AMBERHOME/test/antechamber/tp/tp.pdb). The the basic command
to create a "prepin" file for LEaP is just:

antechamber -i tp.pdb -fi pdb -o tp.prepin -fo prepi -c bcc

This command says the input format is pdb, output format is prepin, and the BCC charge model is
to be used. This produces the output filetp.prepin, (shown in the box on the next page). The for-
mat of this file is that of the now-obsoleteprep program, but LEaP can also read this, using the
loadAmberPrep command. Generally, users should have no need to modify this file.

You can now runparmchkto see if all of the needed force field parameters are available:

parmchk -i tp.prepin -f prepi -o frcmod

This yields thefrcmodfile:

remark goes here

MASS

BOND

ANGLE

ca-ca-ha 50.000 120.000 same as ca-ca-hc

DIHE

IMPROPER

ca-ca-ca-ha 1.1 180.0 2.0 Using default value

ca-ca-ca-sh 1.1 180.0 2.0 Using default value

NONBON

In this case, there was one missing angle parameter from thegaff.datfile, and it was determined
by analogy to a similar, known, parameter. The missing improper dihedral terms were assigned a
default value. (Asgaff.datcontinues to be developed, there should be fewer and fewer missing

2/28/02

Antechamber Page 74

tp.prepin

0 0 2

This is a remark line

molecule.res

TP XYZ 0

CORRECT OMIT DU BEG

0.0000

1 DUMM DU M 0 -1 -2 0.000 .0 .0 .00000

2 DUMM DU M 1 0 -1 1.449 .0 .0 .00000

3 DUMM DU M 2 1 0 1.522 111.1 .0 .00000

4 CG ca M 3 2 1 1.540 111.208 180.000 -0.119

5 H32 ha E 4 3 2 1.106 67.689 -5.945 0.143

6 CD1 ca M 4 3 2 1.400 120.476 114.483 -0.114

7 H29 ha E 6 4 3 1.016 119.603 -105.804 0.135

8 CE1 ca M 6 4 3 1.399 120.112 103.689 -0.137

9 H30 ha E 8 6 4 1.172 119.429 145.095 0.133

10 CZ ca M 8 6 4 1.400 119.867 -0.280 -0.112

11 H31 ha E 10 8 6 1.172 106.739 174.651 0.133

12 C6 ca M 10 8 6 1.400 120.043 0.105 -0.145

13 HE2 ha E 12 10 8 1.080 119.962 179.978 0.130

14 CD2 ca M 12 10 8 1.400 120.059 0.129 0.017

15 S15 sh M 14 12 10 1.400 120.111 179.881 -0.256

16 H19 hs E 15 14 12 0.999 109.520 59.997 0.191

LOOP

CD2 CG

IMPROPER

CD2 CD1 CG H32

CG CE1 CD1 H29

CD1 CZ CE1 H30

C6 CE1 CZ H31

CD2 CZ C6 HE2

C6 CG CD2 S15

DONE

STOP

parameters to be estimated byparmchk.) In some cases,parmchkmay be unable to make a good
estimate; it will then insert a placeholder (with zeros everywhere) into thefrcmodfile, with the
comment "ATTN: needs revision". After manually editing this to take care of the elements that
"need revision", you are ready to read this residue into LEaP, either as a residue on its own, or as
part of a larger system. The following LEaP input file (leap.in) will just create a system with
thiophenol in it:

2/28/02

Antechamber Page 75

source leaprc.gaff

mods = loadAmberParams frcmod

loadAmberPrep tp.prepin

saveAmberParm TP prmtop prmcrd

quit

You can read this into LEaP as follows:

tleap -s -f leap.in

This will yield aprmtopandprmcrdfile. If you want to use this residue in the context of a larger
system, after the loadAmberPrep step, you can insert commands to construct the system you
want, using standard LEaP commands.

In this respect, it is worth noting that the atom types ingaff.datare all lower-case, whereas
the atom types in the standard Amber force fields are all upper-case. This means that you can
load bothgaff.datand (say)parm99.datinto LEaP at the same time, and there won’t be any con-
flicts. Hence, it is generally expected that you will use one of the Amber force fields to describe
your protein or nucleic acid, and thegaff.datparameters to describe your ligand; as mentioned
above,gaff.dathas been designed with this in mind,i.e. to produce molecular mechanics descrip-
tions that are generally compatible with the Amber macromolecular force fields.

The procedure above only works as it stands for neutral molecules. If your molecule is
charged, you need to set the-nc flag in the initialantechamberrun. Also note that this procedure
depends heavily upon the initial 3D structure: it must have all hydrogens present, and the charges
computed are those for the conformation you provide, after minimization in the AM1 Hamilto-
nian. In effect, this means that you must have an reasonable all-atom initial model of your
molecule (so that it can be minimized with the AM1 Hamiltonian), and you must specify what its
net charge is. The system should really be a closed-shell molecule, since all of the atom-typing
rules assume this implicitly.

Further examples of usingantechamberto create force field parameters can be found in the
amber7/test/antechamberdirectory. Here are some practical tips from Junmei Wang:

(1) For the input molecules, make sure there are no open valences and the sturctures are rea-
sonable.

(2) Most failures caused whenantechamberinfers an incorrect connectivity. In such cases,
you can revise by hand the connectivity information in "ac" or "mol2" files. Systematic
errors could be corrected by revising the parameters in CONNECT.TPL in $AMBER-
HOME/dat/antechamber.

(3) It is a good idea to check the intermediate files in case of program failure, and you can
run separate programs one by one. Use the "-s 2" flag toantechamberto see details of
what it is doing.

(4) Please visit towww.amber.ucsf.edu/antechamber.htmlto obtain the latest information
aboutantechamberdevelopment and to download the latest GAFF parameters. Please
report program failures to Junmei Wang at <junmei@cgl.ucsf.edu> or
<jwang@tbc.com>.

2/28/02

Antechamber Page 76

4.3. Programs called by antechamber
The following programs are automatically called byantechamberwhen needed. Generally,

you should not need to run them yourself, unless problems arise and/or you want to fine-tune
whatantechamberdoes.

4.3.1. atomtype
Atomtype reads in an ac file and assign the atom types. You may find the default definition

files in $AMBERHOME/dat/antechamber: ATOMTYPE_AMBER.DEF (amber), ATOM-
TYPE_GFF.DEF (general force field). AT OMTYPE_GFF.DEF is the default definition file

Usage atomtype -i inputfile (ac)

-o outputfile (ac)

-p amber or gff, it is suppressed by "-d" option

-d atom_type_definition_file, optional

Example:

atomtype -i sustiva_resp.ac -o sustiva_resp_at.ac -p amber

This command assigns atom types forsustiva_resp.acwith amber atom type definitions. The out-
put file name issustiva_resp_at.ac

4.3.2. bcc
Bcc first reads in an ac file with assigned atom types and bond types according to

AM1-BCC definitions. Then the bcc parameter file (default is BCCPARM.DAT in $AMBER-
HOME/dat/antechamber) is read in. An ac file with AM1-BCC charge is written out. Be sure the
charges in the input ac file are AM1-Mulliken charges, which can be generated withantechamber.

Usage: bcc -i input_file_name

-o output_file_name

-p bcc_parm_file_name (optional)

Example:

bcc -i comp1.dat -o comp1_bcc.ac

This command reads incomp1.datgenerated by bcctype and does bond charge corrections to get
AM1-BCC charges.comp1_bcc.acis an ac file with the final AM1-BCC charges.

4.3.3. bcctype
Bcctype is a program to assign the atom types and bond types according to AM1-BCC defi-

nitions (BCCTYPE.DEF in $AMBERHOME/dat/antechamber). This program can read an ac file
or mol2 file; the output file is an ac file with predicted atom types and bond types. You have
chance to determine to assign atom types or bond types or both. If there is some problem with the
assignment of bond types, you will get some warnings and for each problem bond, a "!!!" is
appended at the end of the line. In intial tests, the current version works for most of the organic
molecules (>95% overall and >90% for charged molecules).

2/28/02

Antechamber Page 77

Usage: bccprep -i input file name

-o output file name

-f file format (ac or mol2)

-p atom type definition file, optional

-j prediction index

at: bcc atom type only

bt: bcc bond type only

both: bcc atom type and bond type

Example:

#! /bin/csh -fv

set mols = /bin/ls*. ac
foreach mol ($mols)

set mol_dir = $mol:r

antechamber -i $mol_dir.ac -fi ac -fo ac -o $mol_dir.ac -c mul

bcctype -i $mol_dir.ac -f ac -o $mol_dir.dat

end

exit(0)

The above script finds all the files with extension of "ac", then calculates the Mulliken charges
usingantechamber, then predicts the atom and bond types with bcctype. Finally, you need to run
bcc to get the AM1-BCC charges.

4.3.4. prepgen
Prepgen generates the prep input file from an ac file. Both the internal and Cartesian coordi-

nate prep input files are supported. It is recommanded to use internal coordinates since the Carte-
sian may not always work. In default, the program generates a mainchain itself. However, you
may also specify the mainchain atom in file mainchain_file. From this file, you can also specify
which atoms will be deleted, and whether to do charge correction or not. In order to generate the
amino-acid-like residue (this kind of reside has one head atom and one tail atom to be connected
to other residues), you need a mainchain file. Sample mainchain files are in $AMBER-
HOME/dat/antechamber.

Usage: prepgen -i input_file(ac)

-o output_file

-f format (car or int, default is int)

-m mainchain_file

-rn residue_name (default MOL)

-rf residue_file_name (default molecule.res)

-f -m -rn -rf are optional

Examples:

prepgen -i sustiva_resp_at.ac -o sustiva_int.prep -f int -rn SUS -rf SUS.res

prepgen -i sustiva_resp_at.ac -o sustiva_car.prep -f car -rn SUS -rf SUS.res

prepgen -i sustiva_resp_at.ac -o sustiva_int_main.prep -f int -rn SUS

-rf SUS.res -m mainchain_sus.dat

prepgen -i ala_cm2_at.ac -o ala_cm2_int_main.prep -f int -rn ALA -rf ala.res

2/28/02

Antechamber Page 78

-m mainchain_ala.dat

The above commands generate different kinds of prep input files with and without specifying a
mainchain file.

4.3.5. espgen
Espgen reads in a gaussian (92,94,98) output file and extract the ESP information. An esp

file for resp program is generated.

Usage: espgen -i input_file_name

-o output_file_name

Example:

espgen -i sustiva_g98.out -o sustiva.esp

The above command reads in sustiva_g98.out and write out sustiva.esp, which can be used by
resp program. Note that this program replaces shell scripts formerly found on the Amber web site
that do equivalent tasks.

4.3.6. respgen
Respgen generates the input files for two-stage resp fitting. The current version only support

single molecule fitting. Atom equivalence is recognized automatically.

Usage respgen -i inputfile (ac)

-o outputfile

-f format (resp1 or resp2)

resp1 - first stage resp fitting

resp2 - second stage resp fitting

Example:

respgen -i sustiva.ac -o sustiva.respin1 -f resp1

respgen -i sustiva.ac -o sustiva.respin2 -f resp2

resp -O -i sustiva.respin1 -o sustiva.respout1 -e sustiva.esp -t qout_stage1

resp -O -i sustiva.respin1 -o sustiva.respout1 -e sustiva.esp -q qout_stage1

-t qout_stage2

antechamber -i sustiva.ac -fi ac -o sustiva_resp.ac -fo ac -c rc

-cf qout_stage2

The above commands first generate the input files (sustiva.respin1 and sustiva.respin2) for resp
fitting. They do two-stage resp fitting and finally useantechamberto read in the resp charges and
write out an ac file − sustiva_resp.ac

4.4. Miscellaneous programs
The Antechamber suite also contains some utility programs that perform various tasks

related to generating molecular mechanics models for molecules. These are listed in alphabetical
order.

2/28/02

Antechamber Page 79

4.4.1. crdgrow
Crdgrow can read an incomplete pdb file (at least three atoms in this file) and a prep input

file, and then generate a complete pdb file. It can be used to do residue mutation. For example, if
you want to change one protein residue to another one, you can just keep the mainchain atoms in
a pdb file and read in the prep input file of the residue you wanted, crdgrow will generate the
coordinates of the missing atoms.

Usage: crdgrow -i input file name (pdb)

-o output file name (pdb)

-p prepin file name

Example:

crdgrow -i ref.pdb -o new.pdb -p sustiva_int.prep

This command reads in ref.pdb (only four atoms) and prep input file sustiva_int.prep, then gener-
ates the coordinates of the missing atoms and writes out a pdb file (new.pdb).

4.4.2. delphigen
Delphigen can read in an ac file and generate the charge and radius file for delphi calcula-

tions.

Usage: delphigen -i input file name (ac)

-c charge file name

-r radius file name

-m modified pdb file name (optional)

-p radius parameter file name (optional)

Example:

delphigen -i sustiva_resp_at.ac -r sustiva.radius -c sustiva.crg

-m sustiva.mpdb

This command reads in sustiva_resp_at.ac and generate the radius file sustiva.radius (the radius
definition file - RADIUS.DAT is in $ACROOT/dat) and the charge file sustiva.crg. A file in mpdb
is also generated.

4.4.3. parmjoin
Parmjoin combines a force field file and an additional force field file (frcmod file)

Usage: parmjoin -p parm file - input

-m frcmod file

-o parm file - output

Example:

parmjoin -p FFPARM.DAT -m frcmod -o newparm.dat

2/28/02

Antechamber Page 80

5. Sander

5.1. Introduction.
This is a guide tosander, the AMBER module which carries out energy minimization,

molecular dynamics, and NMR refinements. The acronym stands forSimulatedAnnealing with
NMR-DerivedEnergyRestraints, but this module is used for a variety of simulations that have
nothing to do with NMR refinement. Some general features are outlined in the following para-
graphs:

(1) Sanderprovides direct support for several force fields for proteins and nucleic acids, and
for several water models and other organic solvents. The basic force field implemented
here has the following form, which is about the simplest functional form that preserves
the essential nature of molecules in condensed phases:

U(R) =
bonds
Σ Kr (r − r eq)

2 bond

+
angles
Σ Kθ (θ − θeq)

2 angle

+
dihedrals

Σ Vn

2
(1 + cos[nφ − γ]) dihedral

+
atoms

i< j
Σ

Aij

R12
ij

−
Bij

Rij
6 van der Waals

+
atoms

i< j
Σ

qi q j

ε Rij
electrostatic

"Non-additive" force fields based on atom-centered dipole polarizabilities can also be
used. These add a "polarization" term to what was given above:

Epol = −
1

2

atom

i
Σ µ i • E(o)

i polarization

whereµ i is an atomic polarizability. In addition, charges that are not centered on atoms,
but are off-center (as for lone-pairs or "extra points") can be included in the force field.

(2) The particle-mesh Ewald (PME) procedure (or, optionally, a "true" Ewald sum) is used to
handle long-range electrostatic interactions. Long-range van der Waals interactions are
estimated by a continuum model. Biomolecular simulations in the NVE ensemble (i.e.
with Newtonian dynamics) conserve energy well over multi-nanosecond runs without
modification of the equations of motion.

(3) Two periodic imaging geometries are included: rectangular parallelopiped and truncated
octahedron (box with corners chopped off). (Sander itself can handle many other periodi-
cally-replicating boxes, but input and output support inLEaP andptraj is only available
right now for these two.) The size of the repeating unit can be coupled to a given external
pressure, and velocities can be coupled to a given external temperature by several
schemes. The external conditions and coupling constants can be varied over time, so

2/28/02

SANDER Introduction Page 81

various simulated annealing protocols can be specified in a simple and flexible manner.

(4) It is also possible to carry out non-periodic simulations, either using "vacuum" potentials
or with a generalized Born/ surface area model for aqueous solvation. The latter is a
promising development, but users should remember that much less is known about the
quality of the results for this option than for the more conventional explicit solvent simu-
lations.

(5) Users can define internal restraints on bonds, valence angles, and torsions, and the force
constants and target values for the restraints can vary during the simulation. The penalty
function can consist of as many as three types of region: it can be flat between an "inner"
set of upper and lower bounds (calledr2 andr3); then rise parabolically when the internal
coordinate violates these bounds; and finally, since large violations may lead to excessive
parabolic penalties, these parabolas can smoothly turn into linear penalties outside even
wider upper and lower bounds (calledr1 and r4). The imposition of restraints can be
made dependent upon the distance that residues are apart in the amino-acid sequence, so
that much of the functionality of programs like DISMAN or DIANA is available. The
relative weights of various terms in the force field can be varied over time, allowing one
to implement a variety of simulated annealing protocols in a single run.

(6) Internal restraints can be defined to be "time-averaged", that is, restraint forces are applied
based on the averaged value of an internal coordinate over the course of the dynamics tra-
jectory, not only on its current value. Alternatively, restraints can be "ensemble-averaged"
using the locally-enhanced-sampling (LES) option.

(7) Restraints can be directly defined in terms of NOESY intensities (calculated with a relax-
ation matrix technique), residual dipolar couplings, scalar coupling constants and proton
chemical shifts. There are provisions for handling overlapping peaks or ambiguous
assignments. In conjunction with distance and angle constraints, this provides a powerful
and flexible approach to NMR structural refinements.

(8) Restraints can also be defined in terms of the root-mean-square coordinate distance from
some reference structure. This allows one to bias trajectories either towards or away from
some target.

(9) Free energy calculations, using thermodynamic integration (TI) with a linear mixing of
the "unperturbed" and "perturbed" Hamiltonian, can now be carried out. For many types
of free energy simulations, TI is the method of choice; users may still wish to usegibbsto
access other types of calculations, such as free energy perturbation.

We hav e divided this manual into the six sections listed in the accompanying table. If you
are just doing "standard" minimization, dynamics, or free energy simulations, read sectionone,
and ignore the rest. If you want to carry out simulated annealing, consult sectiontwo. Those who
wish to carry out simulations while imposing internal coordinate restraints should also read sec-
tions threeandfour. Sectionsfive throughsevenallow you to add sophisticated penalty functions
during NMR refinement.

5.2. Credits
The annealing, "weight change," "restraints" and NMR-specific portions ofsanderwere pri-

marily written by David Pearlman and David Case. All of the AMBER crew listed on the title
page contributed to the general portions; the polarization implementation is that of Jim Caldwell,
Liem Dang, and Tom Darden, and the "targeted MD" code is from Carlos Simmerling. The

2/28/02

SANDER Introduction Page 82

Purpose Sections involved

Simple min/md/free energy 1

varying parameters over time 1,2
(simulated annealing)

using internal restraints 3,4
(including NMR distance & angle constraints)

nmr refinement using NOESY volume restraints 5

nmr refinement using chemical shift restraints 6

nmr refinement using direct dipolar splittings 7

pseudocontact shift code was provided by Ivano Bertini of the University of Florence. A brief
overview and history of parallel implementations is given in the Installation section, as well as in
Ref [1].

Particle Mesh Ewald.The Particle Mesh Ewald (PME) method was implemented originally
in AMBER 3a by Tom Darden, and has been developed in subsequent versions of AMBER by
several people, in particular by Tom Darden, Tom Cheatham, Mike Crowley and David Case.
The PME method not only provides a better treatment of long range electrostatics (at a modest
computational cost), but can be applied in both rectangular and non-rectangular periodic bound-
ary simulations [34-37].

Generalized Born.When igb=1, we use the "pairwise" generalized Born model introduced
by Hawkins, Cramer and Truhlar [38,39], which is based on earlier ideas by Still and others
[40-43]. Radii are the Bondi radii [44], optionally with slight modifications of the different types
of hydrogen atoms; [28] the overlap paramters are taken from the TINKER molecular modeling
package (http://tinker.wustl.edu). The effects of added monovalent salt are included
at a level that approximates the solutions of the linearized Poisson-Boltzmann equation [45]. The
implementation is by David Case, who thanks Charlie Brooks for inspiration.

When igb=2, modifications outlined by Onufriev, Bashford and Case are used [46]; options
igb=3 andigb=4 implement the GB models proposed by Jayaram, Sprous and Beveridge [30].

Solvent-accessible surface areasIt is also possible to carry out GB/SA simulations, using
the surface areas (SA) to approximate the cavity and van der Waals contributions to solvation.
The surface area is calculated using the LCPO (Linear Combinations of Pairwise Overlaps) model
[47].

2/28/02

SANDER Input description Page 83

5.3. File usage.

Usage: sander [-help] [-O] -i mdin -o mdout -p prmtop -c inpcrd -r restrt

-ref refc -x mdcrd -v mdvel -e mden -inf mdinfo -radii rad

−O Overwrite output files if they exist.

file unit in/out purpose

---- ---- ----- -------

mdin 5 input control data for the min/md run

mdout 6 output user readable state info and diagnostics

-o stdout will send output to stdout

(to the terminal) instead of to a file.

mdinfo 7 output latest mdout-format energy info

prmtop 8 input molecular topology, force field, periodic

box type, atom and residue names

inpcrd 9 input initial coordinates and (optionally)

velocities and periodic box size

refc 10 input (optional) reference coords for position

restraints; also used for targetted MD

mdcrd 12 output coordinate sets saved over trajectory

mdvel 13 output velocity sets saved over trajectory

mden 15 output extensive energy data over trajectory

restrt 16 output final coordinates, velocity, and box

dimensions if any - for restarting run

inpdip 19 input polarizable dipole file, when indmeth=3

rstdip 20 output polarizable dipole file, when indmeth=3

2/28/02

SANDER Input description Page 84

5.4. Example input files
Here are a couple of sample files, just to establish a basic syntax and appearance. There are

more examples of NMR-related files later in this chapter.

1. Simple restrained minimization

Minimization with Cartesian restraints
&cntrl

imin=1, maxcyc=200, (invoke minimization)
ntpr=5, (print frequency)
ntr=1, (turn on Cartesian restraints)

&end
Group input for restrained atoms

1.0 (force constant for restraint)
RES 1 58 (all atoms in residues 1-58)
END
END

2. "Plain" molecular dynamics run

molecular dynamics run
&cntrl

imin=0, irest=1, ntx=7, (restart MD)
ntt=1, temp0=300.0, tautp=0.2, (temperature control)
ntp=1, taup=0.2, (pressure control)
ntb=2, ntc=2, ntf=2, (SHAKE, periodic bc.)
nstlim=500000, (run for 0.5 nsec)
ntwe=100, ntwx=100, ntpr=200, (output frequency)

&end

2/28/02

SANDER Input description Page 85

5.5. Overview of the information in the input file

Section Comments Format

ONE Standard minimization and dy-
namics input

One or more title lines, followed by the (re-
quired) &cntrl and (optional) &ewald or
&debugf namelist blocks

TWO Varying conditions Parameters for changing temperature, restraint
weights, etc. during the MD run. Each parame-
ter is specified by a separate&wt namelist
block, ending with &wt type=’END’,
&end.

THREE I/O redirection TYPE=filename lines. Section ends with the
first non-blank line which does not correspond
to a recognized redirection.

FOUR Distance and angle restraints Multiple&rst namelists; these are read from
the DISANGfilenamegiven in section THREE.
One&rst definition is given per restraint.

FIVE NOESY volume restraints Read only if NMROPT= 2 and aNOEEXP=file-
namewas giv en in THREE. Defines molecular
subgroups. Each definition consists of one
&noeexp namelist followed by the group cards
defining the subgroup.

SIX Chemical shifts restraints Read only if NMROPT= 2 and aSHIFTS=file-
nameor PCSHIFT=filenamewas giv en in sec-
tion THREE, Exactly one&shf or &pcshf
namelist (or both) must be provided for this sec-
tion.

SEVEN Direct dipolar coupling restraints Read only if NMROPT= 2 and aDIPOLE=file-
namecommand was given in section THREE,
Exactly one&align namelist block must be
provided for this section.

EIGHT Group information Read if NTR=1, IDECOMP=1, ITGTMD=1 or
IBELLY=1. Input format is described in Ap-
pendix B.

2/28/02

SANDER Input section ONE Page 86

5.6. SECTION ONE: General minimization and dynamics parameters.
Each of the variables listed below is input in a namelist statement with the namelist identi-

fier &cntrl . You can enter the parameters in any order, using keyword identifiers. Variables
that are not given in the namelist input retain their default values. Support for namelist input is
included in almost all current Fortran compilers, and is a standard feature of Fortran 90. A
detailed description of the namelist convention is given in Appendix A.

In general, namelist input consists of an arbitrary number of comment cards, followed by a
record whose first 7 characters after a "&" (e.g. " &cntrl ") name a group of variables that
can be set by name. This is followed by statements of the form "maxcyc=500, diel=2.0,
... ", and is concluded by an "&end " token. The first line of input contains a title, which is
then followed by the&cntrl namelist. Note that the first character on each line of a namelist
block must be a blank.

5.6.1. General flags describing the calculation.

IMIN Flag to run minimization

= 0 No minimization (only do molecular dynamics; default)

= 1 Perform minimization (and no molecular dynamics)

=5 Read in a trajectory for analysis.

NMROPT

= 0 no nmr-type analysis will be done; default (Note: this variable
replacesnmrmax from previous versions, and has a slightly different
meaning.)

> 0 NMR restraints/weight changes will be read

= 2 NOESY volume restraints or chemical shift restraints will be read as
well

5.6.2. Nature and format of the input.
NTX Option to read the initial coordinates, velocities and box size from the

"inpcrd" file. The options 1-2 must be used when one is starting from mini-
mized or model-built coordinates. If an MD restrt file is used as inpcrd, then
options 4-7 may be used.

= 1 X is read formatted with no initial velocity information (default)

= 2 X is read unformatted with no initial velocity information

= 4 X and V are read unformatted.

2/28/02

SANDER Input section ONE Page 87

= 5 X and V are read formatted; box information will be read if ntb>0.
The velocity information will only be used ifirest=1.

= 6 X, V and BOX(1..3) are read unformatted.

IREST Flag to restart the run.

= 0 No effect (default)

= 1 restart calculation. Requires velocities in coordinate input file, so
you also may need to reset NTX if restarting MD)

NTRX Format of the cartesian coordinates for restraint from file "refc". Note: the
program expects file "refc" to contain coordinates for all the atoms in the sys-
tem. A subset for the actual restraints is selected by the GROUP input which
follows.

= 0 Unformatted (binary) form

= 1 Formatted (ascii, default) form

5.6.3. Nature and format of the output.
NTXO Format of the final coordinates, velocities, and box size (if constant volume or

pressure run) written to file "restrt".

= 0 Unformatted

= 1 Formatted (default).

NTPR Every NTPR steps energy information will be printed in human-readable form
to files "mdout" and "mdinfo". "mdinfo" is closed and reopened each time, so
it always contains the most recent energy and temperature. Default 50.

NTAVE Every NTAVE steps of dynamics, running averages of average energies and
fluctuations over the last NTAVE steps will be printed out. Default value of 0
disables this printout.

NTWR Every NTWR steps during dynamics, the "restrt" file will be written, ensuring
that recovery from a crash will not be so painful. In any case, restrt is written
ev ery NSTLIM steps. If NTWR<0, a unique copy of the file, restrt_nstep, is
written every abs(NTWR) steps. This option is useful if for example one
wants to run free energy perturbations from multiple starting points or save a
series of restrt files for minimization. Default 500.

IWRAP If set to 1, the coordinates written to the restart and trajectory files will be
"wrapped" into a primary box. This means that for each molecule, the image
closest to the middle of the "primary box" [with x coordinates between 0 and
a, y coordinates between 0 and b, and z coordinates between 0 and c] will be
the one written to the output file. This often makes the resulting structures
look better visually, but has no effect on the energy or forces. Performing
such wrapping, however, can mess up diffusion and other calculations. The
default (wheniwrap=0) is to not perform any such manipulations; in this case
it is typical to useptraj as a post-processing program to translate molecules
back to the primary box. You may also want to useiwrap=1 if you are
preparing a system for further runs ingibbs, since that program requires the

2/28/02

SANDER Input section ONE Page 88

coordinates to be wrapped. For very long runs, settingiwrap=1 may be
required to keep the coordinate output from overflowing the trajectory file for-
mat.

NTWX Every NTWX steps the coordinates will be written to file "mdcrd". NTWX=0
inhibits all output. Default 0.

NTWV Every NTWV steps the velocities will be written to file "mdvel". NTWV=0
inhibits all output. Default 0.

NTWE Every NTWE steps the energies and temperatures will be written to file
"mden" in compact form. NTWE=0 inhibits all output. Default 0.

IOUTFM Format of velocity, coordinate, and energy sets. Note: these values are "back-
wards" compared to NTRX and NTXO; this is an ancient mistake that we are
reluctant to change, since it would break existing scripts.

= 0 Formatted (default)

= 1 Binary

NTWPRT Coordinate/velocity archive limit flag. This flag can be used to decrease the
size of the coordinate / velocity archive files, by only including that portion of
the system of greatest interest. (E.g. one can print only the solute and not the
solvent, if so desired). The Coord/velocity archives will include:

= 0 all atoms of the system (default).

> 0 only atoms 1->NTWPRT.

IDECOMP This option is only really useful in conjunction withmm_pbsa, where it is
turned on automatically if required. The options are:

= 0 Do nothing (default).

= 1 Decompose energies on a per-residue basis; 1-4 EEL + 1-4 VDW are
added to internal (bond, angle, dihedral) energies.

= 2 Decompose energies on a per-residue basis; 1-4 EEL + 1-4 VDW are
added to EEL and VDW.

= 3 Decompose energies on a pairwise per-residue basis; the rest is equal
to "1".

= 4 Decompose energies on a pairwise per-residue basis; the rest is
equal to "2".

If decomp is switched on, residues may be chosen by the RRES and/or LRES
card. The RES card determines about which residues information is finally
output. See themm_pbsachapter for more information. Use ofidecomp> 0
is incompatible withntr > 0 or ibelly > 0.

5.6.4. Potential function.
NTF Force evaluation. Note: If SHAKE is used (see NTC), it is not necessary to

calculate forces for the constrained bonds.

= 1 complete interaction is calculated (default)

2/28/02

SANDER Input section ONE Page 89

= 2 bond interactions involving H-atoms omitted (use with NTC=2)

= 3 all the bond interactions are omitted (use with NTC=3)

= 4 angle involving H-atoms and all bonds are omitted

= 5 all bond and angle interactions are omitted

= 6 dihedrals involving H-atoms and all bonds and all angle interactions
are omitted

= 7 all bond, angle and dihedral interactions are omitted

= 8 all bond, angle, dihedral and non-bonded interactions are omitted

NTB Periodic boundary. If NTB .EQ. 0 then a boundary is NOT applied regardless
of any boundary condition information in the topology file. The value of NTB
specifies whether constant volume or constant pressure dynamics will be used.
Options for constant pressure are described in a separate section below.

= 0 no periodicity is applied

= 1 constant volume (default)

= 2 constant pressure

If NTB .NE. 0, there must be a periodic boundary in the topology file. Con-
stant pressure is not used in minimization (IMIN=1, above).

For a periodic system, constant pressure is the only way to equilibrate density
if the starting state is not correct. For example, the solvent packing scheme
used in LEaP can result in a net void when solvent molecules are subtracted
which can aggregate into "vacuum bubbles" in a constant volume run.
Another potential problem are small gaps at the edges of the box. The upshot
is that almost every system needs to be equilibrated at constant pressure
(ntb=2, ntp>0) to get to a proper density. But be sure to equilibrate first (at
constant volume) to something close to the final temperature, before turning
on constant pressure.

DIELC Dielectric multiplicative constant for the electrostatic interactions. Default is
1.0. Please note this is NOT the solvent dielectric constant for generalized
Born simulations.

CUT This is used to specify the nonbonded cutoff, in Angstroms. For PME, the
cutoff is used to limit direct space sum, and the default value of 8.0 is usually
a good value. Whenigb>0, the cutoff is used both to truncate nonbonded
pairs (on an atom-by-atom basis) and to ignore distant pairs in computing the
effective Born radii; here a larger value than the default is generally required.

SCNB 1-4 vdw interactions are divided by SCNB. Default 2.0.

SCEE 1-4 electrostatic interactions are divided by SCEE; the 1991 and previous
force fields used 2.0, while the 1994 force field uses 1.2. Default is 1.2.

NSNB Determines the frequency of nonbonded list updates whenigb=0 and
nbflag=0; see the description ofnbflagfor more information.

IPOL Inclusion of polarizabilities in the force field (see below).

= 0 non polar calc (default).

= 1 turn on polarization calculation. Polarizabilities must be present in
prmtop.

2/28/02

SANDER Input section ONE Page 90

5.6.5. Generalized Born/Surface Area options
The generalized Born solvation model can be used instead of explicit water for non-polariz-

able force fields such as ff94 or ff99. There are several "flavors" of GB available, depending upon
the value ofigb. The version that has been most extensively tested corresponds toigb=1; users
should understand that all (current) GB models have limitations, and should especially proceed
with caution in using values ofigb > 1. Generalized Born simulations can only be run for non-
periodic systems, wherentb=0.

IGB

= 0 No generalized Born term is used. (Default)

= 1 The "standard" pairwise generalized Born model is used, with
parameters described by Tsui and Case [28]. This model uses the
default radii set up by LEaP. It is slightly different from the GB
model that was included in Amber6. If you want to compare to
Amber 6, or need to continue a on-going simulation, you should use
the command "set default PBradii amber6" in LEaP, and setigb=1 in
sander. For reference, the Amber6 values are those used by an earlier
Tsui and Case paper [29].

= 2 Use a modified GB model under development by A. Onufriev, D.
Bashford and D.A. Case; the main idea has been published [46], but
the actual implementation here is an elaboration of this initial idea.
With igb=2, the inverse of the effective Born radius is given by:

R−1
i = ρ−1

i − tanh(α Ψ − βΨ2 + γ Ψ3)/ρ i

where ρ i = ρ i − offset, and Ψ = I ρ i , with I given in our earlier
paper. The parametersα , β , andγ were determined by empirical
fits, and have the values 0.8, 0.0, and 2.9. Full details are in a
manuscript in preparation. Users should be aware that this model is
still under development, and these parameters may change; all but
the most adventurous should probably wait until the work is pub-
lished, in order to see its strengths and weaknesses compared to the
more conventionaligb =1 option. With this option, you should set
use the command "set default PBradii bondi" in setting up theprmtop
file.

= 3 Uses the parameterization derived by Jayaram, Sprous and Beveridge
called "GB" [30]. You should use the command "set default PBradii
gbjsb" in LEaP, in order to get the correct radii and screening param-
eters. Settingigb =3 also resets the offset to zero, as required by this
model.

= 4 Uses the "modified" parameterization derived by Jayaram, Sprous
and Beveridge called "MGB" [30]. You should use the command
"set default PBradii mgbjsb" in LEaP, in order to get the correct radii
and screening parameters. We hav e primarily used this option for
"snapshot" analysis, withmm_pbsa; use of this option for molecular
dynamics simulations should be undertaken carefully, and may not

2/28/02

SANDER Input section ONE Page 91

give good results. Settingigb =4 also resets the offset to zero, as
required by this model.

INTDIEL Sets the interior dielectric constant of the molecule of interest. Default is 1.0.
Other values have not been extensively tested.

EXTDIEL Sets the exterior or solvent dielectric constant. Default is 78.5.

SALTCON Sets the concentration (M) of 1-1 mobile counterions in solution, using a
modified generalized Born theory based on the Debye-Hückel limiting law for
ion screening of interactions. The theory for this is presented in J. Srinivasan,
M.W. Trevathan, P. Beroza and D.A. Case. Application of a pairwise general-
ized Born model to proteins and nucleic acids: Inclusion of salt effects.
Theor. Chem. Accts.101, 426-434 (1999). Default is 0.0 M (i.e. no Debye-
Hückel screening.) Settingsaltcon to a non-zero value does result in some
increase in computation time, however.

RBORNSTAT If rbornstat = 1, the statistics of the effective Born radii for each atom of the
molecule throughout the molecular dynamics simulation are reported in the
output file. Default is 0.

OFFSET The dielectric radii for generalized Born calculations are decreased by a uni-
form value "offset" to give the "intrinsic radii" used to obtain effective Born
radii. Default 0.09 Å.

GBSA Option to carry out GB/SA (generalized Born/surface area) simulations. For
the default value of 0, surface area will not be computed and included in the
solvation term. Ifgbsa = 1, surface area will be computed using the LCPO
model [47].

SURFTEN Surface tension used to calculate the nonpolar contribution to the free energy
of solvation (whengbsa = 1), as Enp = surften*SA. The default is 0.005
kcal/mol-Å2 [48].

5.6.6. Frozen or restrained atoms.
IBELLY Flag for belly type dynamics.

= 0 No belly run (default).

= 1 Belly run. A subset of the atoms in the system will be allowed to
move, and the coordinates of the rest will be frozen. Themoving
atoms are specified in Group format at the end of all other input from
file "mdin". Group input is described in the Appendix. This option
is not available whenigb>0.

NTR Flag for restraining specified atoms in Cartesian space using a harmonic
potential. Note: the restrained atoms are read in GROUP format (from the
mdin file) after all other input (except for the belly groups). The force con-
stant is provided in the group input, and multiple groups can be defined, each
with a different force constant. The coordinates are read in "restrt" format
from the "refc" file (see NTRX, above).

= 0 No position restraints (default)

2/28/02

SANDER Input section ONE Page 92

= 1 MD with restraint of specified atoms

5.6.7. Targeted MD
The targeted MD option adds an additional term to the energy function based on the mass-

weighted root mean square deviation of a set of atoms in the current structure compared to a ref-
erence structure. The reference structure is specified using the-ref flag in the same manner as is
used for Cartesian coordinate restraints (NTR=1). At each step, sander performs a best-fit of the
reference structure to the simulation structure and calculates the RMSD for the selected atoms.
The energy term has the form:

E = 0.5 * TGTMDFRC * NATC * (RMSD-TGTRMSD)**2

The energy will be added to the RESTRAINT term. Note that the energy is weighted by the num-
ber of atoms that were specified in the group input (NATC). The RMSD is the root mean square
deviation and is mass weighted. The atoms to be used for the RMSD calculation must be pro-
vided in group input in the same style as is used for Cartesian restraints (NTR=1), with the excep-
tion that the force constant is defined using thetgtmdfrcvariable (see below), and is not specified
in the group input. This option can be used with molecular dynamics or minimization. When tar-
geted MD is used,sanderwill print the current values for the actual and target RMSD to the
energy summary in the output file.

ITGTMD

= 0 no targeted MD (default)

= 1 use targeted MD

TGTRMSD Value of the target RMSD. The default value is 0. This value can be changed
during the simulation by using the weight change option (see Section Two of
the sander manual).

TGTMDFRC This is the force constant for targeted MD. The default value is 0, which will
result in no penalty for structure deviations regardless of the RMSD value.
Note that this value can be negative, which would force the coordinates
AWAY from the reference structure.

One can imagine many uses for this option, but a few things should be kept in mind. Since
there is currently only one reference coordinate set, there is no way to force the coordinates to any
specific structure other than the reference. To move a structure toward a reference coordinate set,
one might use an initialtgtrmsdvalue corresponding to the actual RMSD between the input and
reference (inpcrd andrefc). Then the weight change option could be used to decrease this value to
0 during the simulation. To move a structure away from the reference, one can increasetgtrmsdto
values larger than zero. The minimum for this energy term will then be at structures with an
RMSD value that matchestgtrmsd. Keep in mind that many different structures may have similar
RMSD values to the reference, and therefore one cannot be sure that increasingtgtrmsdto a given
value will result in a particular structure that has that RMSD value. In this case it is probably
wiser to use the final structure, rather than the initial structure, as the reference coordinate set, and
decreasetgtrmsdduring the simulation. A negative force constanttgtmdfrccan be used, but this
can cause problems since the energy will continue to decrease as the RMSD to the reference
increases.

2/28/02

SANDER Input section ONE Page 93

Also keep in mind that phase space for molecular systems can be quite complex, and this
method does not guarantee that a low energy path between initial and target structures will be fol-
lowed. It is possible for the simulation to become unstable if the restraint energies become too
large if a low- energy path between a simulated structure and the reference is not accessible.

Note also that the input and reference coordinates are expected to match the prmtop file and
have atoms in the same sequence. No provision is made for symmetry; rotation of a methyl group
by 120º would result in a non-zero RMSD value. The atoms selected for the best-fit and RMSD
calculation are the same−one cannot fit to one group and penalize the RMSD for a different group
of atoms.

5.6.8. Energy minimization.
MAXCYC Maximum number of cycles of minimization. Default 1.

NCYC After NCYC cycles the method of minimization would be switched from
steepest descent to conjugate gradient method. Default 10.

NTMIN Flag for the method of minimization.

= 0 Full conjugate gradient minimization. The first 10 cycles are steepest
descent at the start of the run and after every nonbonded pairlist
update.

= 1 For NCYC cycles the steepest descent method is used then conjugate
gradient is switched on (default).

= 2 Only steepest descent method is used.

DX0 The initial step length. If the initial step length is big then the minimizer will
try to leap the energy surface and sometimes the first few cycles will give a
huge energy, howev er the minimizer is smart enough to adjust itself. Default
0.01.

DXM The maximum step length allowed. Default 0.5.

DRMS Convergence criterion for the energy gradient: minimization will halt when
the root-mean-square of the Cartesian elements of the gradient is less than
DRMS. Default 1.0E-4 kcal/mole A° .

5.6.9. Molecular dynamics.
NSTLIM Number of MD-steps to be performed. Default 1.

NSCM Flag for the removal of translational and rotational center-of-mass motion at
regular intervals. For non-periodic simulations, after every NSCM steps,
translational and rotational motion will be removed. For periodic systems,
just the translational center-of-mass motion will be removed. This flag is
ignored for belly simulations. Default 1000.

T The time at the start (psec) this is for your own reference and is not critical.
Start time is taken from the coordinate input file if IREST=1. Default 0.0.

DT The time step (psec). Recommended MAXIMUM is .002 if SHAKE is used,
or .001 if it isn’t. Note that for temperatures above 300K, the step size should

2/28/02

SANDER Input section ONE Page 94

be reduced since greater temperatures mean increased velocities and longer
distance travelled between each force evaluation, which can lead to anoma-
lously high energies and system blowup. Default 0.001.

NRESPA This variable allows the user to evaluate slowly-varying terms in the force
field less frequently. For PME, "slowly-varying" (now) means the reciprocal
sum. For generalized Born runs, the "slowly-varying" forces are those involv-
ing derivatives with respect to the effective radii, and pair interactions whose
distances are greater than the "inner" cutoff, currently hard-wired at 8 Å.
If NRESPA>1 these slowly-varying forces are evaluated everynrespasteps.
The forces are adjusted appropriately, leading to an impulse at that step. If
nrespa*dtis less than or equal to 4 fs the energy conservation is not seriously
compromised. However ifnrespa*dt> 4 fs the simulation becomes less sta-
ble. Note that energies and related quantities are only accessible everynrespa
steps, since the values at other times are meaningless.

5.6.10. Temperature regulation.
TEMP0 Reference temperature at which the system is to be kept, through a "weak-

coupling" scheme [49]. Note that for temperatures above 300K, the step size
should be reduced since increased distance travelled between evaluations can
lead to SHAKE and other problems. Default 300.

TEMP0LES This is the target temperature for all LES particles (see Chapter 6). If
temp0les<0, a single temperature bath is used for all atoms, otherwise sepa-
rate thermostats are used for LES and non-LES particles. Default is -1, corre-
sponding to a single temperature bath.

TEMPI Initial temperature. For the initial dynamics run, (NTX .lt. 3) the velocities
are assigned from a Maxwellian distribution at TEMPI K. If TEMPI = 0.0,
the velocities will be calculated from the forces instead. TEMPI has no effect
if NTX .gt. 3. Default 0.0.

IG The seed for the random number generator. The MD starting velocity is
dependent on the random number generator seed if NTX .lt. 3 .and. TEMPI
.ne. 0.0. Default 71277.

HEAT If ABS(HEAT) .GE. 1.0E-06, all the velocities are multiplied by HEAT. This
only affects the initial velocities assigned at TEMPI. Default 0.0.

NTT Switch for temperature scaling. Note that setting NTT=0 corresponds to the
microcanonical (NVE) ensemble (which should approach the canonical one
for large numbers of degrees of freedom); the other options do not correspond
to common ensembles. Some aspects of the "weak-coupling ensemble"
(NTT=1) have been examined, and roughly interpolate between the micro-
canonical and canonical ensembles [50].

= 0 Constant total energy classical dynamics (assuming thatntb<2, as
should probably always be the case whenntt=0).

= 1 Constant temperature, using the weak-coupling algorithm [49]. A
single scaling factor is used for all atoms.

2/28/02

SANDER Input section ONE Page 95

= 4 Randomly choose velocities when the temperature changes by more
than DTEMP from the target temperature TEMP0.

DTEMP For NTT = 4, if the difference between the system temperature and TEMP0 is
more than DTEMP, the velocities will be reassigned at TEMP0. Default 5.0.
This is not compatible withtemp0les> 0.

VRAND If vrand>0, the velocities will be randomized to temperature TEMP0 every
vrand steps. If vrand<0, the velocities will be randomized once, at step
−vrand. Default value of 0 does neither of these.

TA UTP Time constant for heat bath coupling for the system. Default 1.0. Generally,
values for TAUTP should be in the range of 0.5-5.0 ps, with a smaller value
providing tighter coupling to the heat bath, therefore a less natural trajectory.
Smaller values of TAUTP result in smaller fluctuations in kinetic energy, but
larger fluctuations in the total energy. Values much larger than the length of
the simulation result in a return to constant energy conditions.

VLIMIT If not equal to 0.0, then any component of the velocity that is greater than
abs(VLIMIT) will be reduced to VLIMIT (preserving the sign). This can be
used to avoid occasional instabilities in molecular dynamics runs. VLIMIT
should generally be set to a value like 20 (the default), which is well above the
most probable velocity in a Maxwell-Boltzmann distribution at room tempera-
ture. A warning message will be printed whenever the velocities are modi-
fied. Runs that have more than a few such warnings should be carefully
examined.

5.6.11. Pressure regulation
In "constant pressure" dynamics, the volume of the unit cell is adjusted (by
small amounts on each step) to make the computed pressure approach the tar-
get pressure,press0. Equilibration with ntp > 0 is generally necessary to
adjust the density of the system to appropriate values. Note that fluctuations
in the instantaneous pressure on each step will appear to be large (several hun-
dred bar), but the average value over many steps should be close to the target
pressure. Pressure regulation only applies when Constant Pressure periodic
boundary conditions are used (ntb = 2). Pressure coupling algorithms used in
AMBER are of the "weak-coupling" variety, analgous to temperature coupling
[49]. Please note: in general you will need to equilibrate the temperature to
something like the final temperature using constant volume (ntp=0) before
switching on constant pressure simulations to adjust the system to the correct
density. If you fail to do this, the program will try to adjust the density too
quickly, and bad things (such as SHAKE failures) are likely to happen.

NTP Flag for constant pressure dynamics. This option should be set to 1 or 2 when
Constant Pressure periodic boundary conditions are used (NTB = 2).

= 0 Used with NTB not = 2 (default); no pressure scaling

= 1 md with isotropic position scaling

= 2 md with anisotropic (x-,y-,z-) pressure scaling: this should only be
used with orthogonal boxes (i.e. with all angles set to 90o).

2/28/02

SANDER Input section ONE Page 96

Anisotropic scaling is primarily intended for non-isotropic systems,
such as membrane simulations, where the surface tensions are differ-
ent in different directions; it is generally not appropriate for solutes
dissolved in water.

PRES0 Reference pressure (in units of bars, where 1 bar ˜ 1 atm) at which the system
is maintained (when NTP > 0). Default 1.0.

COMP compressibility of the system when NTP > 0. The units are in 1.0E-06/bar; a
value of 44.6 (default) is appropriate for water.

TA UP Pressure relaxation time (in ps), when NTP > 0. The recommended value is
between 1.0 and 5.0 psec. Default value of 0.2 could be used for equilibration
to more quickly get the desired density.

PLEVEL Sets the parallelization level for constant pressure simulations. A value of
zero is used for minimization, which means that only the force() routine is
parallelized. The default value of 1 is the most correct for dynamics, but
requires that the velocities be distributed to all processors on every step. A
value of 2 avoids distribution of velocities, at the cost of a small error in com-
puting the pressure--basically, the fact the a single molecule could span sev-
eral processors is ignored in computing the virial. For typical problems with a
few solute (macro)molecules and many water molecules, this error is negligi-
ble. This value is only relevent whenntp > 0 and -DMPI is set in the
MACHINE file.

5.6.12. SHAKE bond length constraints.
NTC Flag for SHAKE to perform bond length constraints [51]. (See also NTF in

thePotential function section.) The SHAKE option should be used for most
MD calculations. The size of the MD timestep is determined by the fastest
motions in the system. SHAKE removes the bond stretching freedom, which
is the fastest motion, and consequently allows a larger timestep to be used.
For water models, a special "three-point" algorithm is used [52]. Since
SHAKE is an algorithm based on dynamics, the minimizer is not aware of
what it is doing; for this reason, minimizations generally should be carried out
without SHAKE.

= 1 SHAKE is not performed (default)

= 2 bonds involving hydrogen are constrained

= 3 all bonds are constrained (not available for parallel runs insander)

TOL Relative geometrical tolerance for coordinate resetting in shake. Recom-
mended maximum: <0.00005 Angstrom Default 0.00001.

JFASTW Fast water definition flag. By default, the system is searched for water
residues, and special routines are used to SHAKE these systems [52].

= 0 Normal operation. Waters are identified by the default names (given
below), unless they are redefined, as described below.

= 4 Do not use the fast SHAKE routines for waters.

2/28/02

SANDER Input section ONE Page 97

The following variables allow redefinition of the default residue and atom
names used by the program to determine which residues are waters.

WA TNAM The residue name the program expects for water. Default’WAT ’ .

OWTNM The atom name the program expects for the oxygen of water. Default’O
’ .

HWTNM1 The atom name the program expects for the 1st H of water. Default’H1 ’ .

HWTNM2 The atom name the program expects for the 2nd H of water. Default’H2
’ .

5.6.13. Water cap.
IVCAP Flag to control cap option. The "cap" refers to a spherical portion of water

centered on a point in the solute and restrained by a soft half-harmonic poten-
tial.

= 0 Cap will be in effect if it is in theprmtopfile (default).

= 1 Cap will be activated except that the cap atom pointer will be modi-
fied

= 2 Cap will be inactivated

MATCAP The cap atom pointer. This is the number of the last non-cap atom. If IVCAP
= 1 then the pointer in theprmtop file will be overwritten by this number.
Default 0.

FCAP The force constant for the cap restraint potential.

5.6.14. NMR refinement options.
ISCALE Number of additional variables to optimize beyond the 3N structural parame-

ters. (Default = 0). At present, this is only used with residual dipolar coupling
restraints, as discussed in section SEVEN.

NOESKP The NOESY volumes will only be evaluated if mod(nstep, noeskp) = 0; other-
wise the last computed values for intensities and derivatives will be used.
(default = 1, i.e. evaluate volumes at every step)

IPNLTY

= 1 the program will minimize the sum of the absolute values of the
errors; this is akin to minimizing the crystallographic R-factor
(default).

= 2 the program will optimize the sum of the squares of the errors.

= 3 For NOESY intensities, the penalty will be of the form

awt [I (1/6)
c − I (1/6)

o]2.

Chemical shift penalties will be as foripnlty=1.

MXSUB Maximum number of submolecules that will be used. This is used to deter-
mine how much space to allocate for the NOESY calculations. Default 1.

2/28/02

SANDER Input section ONE Page 98

SCALM "Mass" for the additional scaling parameters. Right now they are restricted to
all have the same value. The larger this value, the slower these extra variables
will respond to their environment. Default 100 amu.

PENCUT In the summaries of the constraint deviations, entries will only be made if the
penalty for that term is greater than PENCUT. Default 0.1.

TA USW For noesy volume calculations (NMROPT = 2), intensities with mixing times
less that TAUSW (in seconds) will be computed using perturbation theory,
whereas those greater than TAUSW will use a more exact theory. See the the-
ory section (below) for details. To always use the "exact" intensities and
derivatives, set TAUSW = 0.0; to always use perturbation theory, set TAUSW
to a value larger than the largest mixing time in the input. Default is TAUSW
of 0.1 second, which should work pretty well for most systems.

5.6.15. Particle Mesh Ewald.
The Particle Mesh Ewald (PME) method is always "on", unlessntb = 0, oruse_pmeis set to

zero. PME is a fast implementation of the Ewald summation method for calculating the full elec-
trostatic energy of a unit cell (periodic box) in a macroscopic lattice of repeating images. As
implemented, the PME in AMBER bypasses the standard pairlist creation and nonbonded energy
and force evaluation, calling special PME functions to calculate the Lennard-Jones and electro-
static interactions. The PME method is fast since the reciprocal space Ewald sums are B-spline
interpolated on a grid and since the convolutions necessary to evaluate the sums are calculated via
fast Fourier transforms. Note that the accuracy of the PME is related to the density of the charge
grid (NFFT1, NFFT2, and NFFT3), the spline interpolation order (ORDER), and the direct sum
tolerance (DSUM_TOL); see the descriptions below for more information.

The&ewald namelist is read immediately after the&cntrl namelist. We hav e tried hard
to make the defaults for these parameters appropriate for solvated simulations.Please take care
in changing any values from their defaults.The &ewald namelist has the following variables:

NFFT1, NFFT2, NFFT3
These give the size of the charge grid (upon which the reciprocal sums are
interpolated) in each dimension. Higher values lead to higher accuracy (when
the DSUM_TOL is also lowered) but considerably slow the calculation. Gen-
erally it has been found that reasonable results are obtained when NFFT1,
NFFT2 and NFFT3 are approximately equal to A, B and C, respectively, lead-
ing to a grid spacing (A/NFFT1, etc) of 1.0 A° . Significant performance
enhancement in the calculation of the fast Fourier transform is obtained by
having each of the integer NFFT1, NFFT2 and NFFT3 values be aproduct of
powersof 2, 3, and 5. If the values are not given, the program will chose val-
ues to meet these criteria.

ORDER The order of the B-spline interpolation. The higher the order, the better the
accuracy (unless the charge grid is too coarse). The minimum order is 3. An
order of 4 (the default) implies a cubic spline approximation which is a good
standard value. Note that the cost of the PME goes as roughly the order to the
third power.

VERBOSE Standard use is to have VERBOSE = 0. Setting VERBOSE to higher values
(up to a maximum of 3) leads to voluminous output of information about the

2/28/02

SANDER Input section ONE Page 99

PME run.

EW_TYPE Standard use is to have EW_TYPE = 0 which turns on the particle mesh
ew ald (PME) method. When EW_TYPE = 1, instead of the approximate,
interpolated PME, anregular Ewald calculation is run. The number of recip-
rocal vectors used depends upon RSUM_TOL, or can be set by the user. The
exact Ewald summation is present mainly to serve as an accuaracy check
allowing users to determine if the PME grid spacing, order and direct sum tol-
erance lead to acceptable results. Although the cost of the exact Ewald
method formally increases with system size at a much higher rate than the
PME, it may be faster for small numbers of atoms (< 500). For larger,
macromolecular systems, with > 500 atoms, the PME method is significantly
faster.

DSUM_TOL This relates to the width of the direct sum part of the Ewald sum, requiring
that the value of the direct sum at the Lennard-Jones cutoff value (specified in
CUT as during standard dynamics) be less than DSUM_TOL. In practice it
has been found that the relative error in the Ewald forces (RMS) due to cut-
ting off the direct sum at CUT is between 10.0 and 50.0 times DSUM_TOL.
Standard values for DSUM_TOL are in the range of 10−6 to 10−5, leading to
estimated RMS deviation force errors of 0.00001 to 0.0005. Default is 10−5.

RSUM_TOL This serves as a way to generate the number of reciprocal vectors used in an
Ewald sum. Typically the relative RMS reciprocal sum error is about 5-10
times RSUM_TOL. Default is 5 x 10−5.

MLIMIT(1,2,3) This allows the user to explicitly set the number of reciprocal vectors used in
a regular Ewald run. Note that the sum goes from -MLIMIT(2) to MLIMIT(2)
and -MLIMIT(3) to MLIMIT(3) with symmetry being used in first dimension.
Note also the sum is truncated outside an automatically chosen sphere

OPT_INFL When this is set to 1 (default) sander does a least squares optimization of B-
spline prefactor. This gives better energies with similar force errors with
frc_int=0 when compared withopt_infl=0. If opt_inflandfrc_int are both set
to 1, the resulting force errors are equivalent to the optimized P3M method
published by Pollock and Glosli, although the present method is a bit simpler
[see Dardenet al. J. Chim. Phys. 94, 1346 (1997)]. No computational over-
head is involved, so opt_inlf = 1 is recommended unless agreement with pre-
vious sander versions is sought

EW_COEFF Ewald coefficient, in Å−1. Default is determined bydsum_tolandcutoff. If it
is explicitly entered here, then this value is used, anddsum_tolis computed
from ew_coeffandcutoff.

NBFLAG If nbflag = 0, construct the direct sum nonbonded list in the "old" way,i.e.
update the list everynsnbsteps. Ifnbflag = 1 (the default),nsnbis ignored,
and the list is updated whenever any atom has moved more than 1/2skinnb
since the last list update.

SKINNB Width of the nonbonded "skin". The direct sum nonbonded list is extended to
cut + skinnb, and the van der Waals and direct electrostatic interactions are
truncated atcut. Default is 2.0 Å. Use of this parameter is required for
energy conservation, and recommended for all PME runs.

2/28/02

SANDER Input section ONE Page 100

NBTELL If nbtell = 1, a message is printed when any atom has moved far enough to
trigger a list update. Used only for debugging or analysis. Default of 0
inhibits the message.

NETFRC The basic "smooth" PME implementation used here does not necessarily con-
serve momentum. Ifnetfrc = 1, (the default) the total force on the system is
artificially removed at every step. This parameter is set to 0 if minimization is
requested.

FRC_INT The smooth PME model computes the forces by differentiating the energy
expression. This is the behavior that is used whenfrc_int is 0, the default.
When frc_int = 1, force interpolation is used; this conserves momentum, but
requires two additional FFT’s at each step, and hence is slower.

USE_PME The default value of 1 means that the reciprocal part of the sum will be com-
puted; if this is set to zero, the reciprocal part will be skipped.

VDWMETH Determines the method used for van der Waals interactions beyond those
included in the direct sum. A value of 0 includes no correction; the default
value of 1 uses a continuum model correction for energy and pressure.

EEDMETH Determines how the switch function for the direct sum Coulomb interaction is
evaluated. The default value of 1 uses a cubic spline. A value of 2 implies a
linear table lookup. A value of three implies use of an "exact" subroutine call.
Wheneedmeth=4,no switch is used (i.e. the bare Coulomb potential is evalu-
ated in the direct sum, cut off sharply at CUT). Wheneedmeth=5,there is no
switch, and a distance-dependent dielectric is used (i.e. the distance depen-
dence is 1/r2 rather than 1/r). The last two options are intended for non-peri-
odic calculations, where no reciprocal term is computed.

EEDTBDNS Density of spline or linear lookup table, ifeedmethis 1 or 2. Default is 2500
points per unit.

5.6.16. Extra point options
Several parameters deal with "extra-points" (sometimes called lone-pairs), which are force

centers that are not at atomic positions. These are currently defined as atoms with "EP" in their
names. These input variables are really only for the convenience of force-field developers;do not
change the defaults unless you know what you are doing, and have read the code.These variables
are set in the&ewald namelist.

FRAMEON If frameon is set to 1, (default) the bonds, angles and dihedral interactions
involving the lone pairs/extra points are removed except for constraints added
during parm. The lone pairs are kept in ideal geometry relative to local atoms,
and resulting torques are transferred to these atoms. To treat extra points as
regular atoms, set frameon=0.

CHNGMASK If chngmask=1 (default), new 1-1, 1-2, 1-3 and 1-4 interactions are calcu-
lated. An extra point belonging to an atom has a 1-1 interaction with it, and
participates in any 1-2, 1-3 or 1-4 interaction that atom has.

For example, suppose (excusing the geometry) C1,C2,C3,C4 form a dihedral
and each has 1 extra point attached as below

2/28/02

SANDER Input section ONE Page 101

C1------C2------C3------C4

| | | |

| | | |

Ep1 Ep2 Ep3 Ep4

The 1-4 interactions include C1−C4, Ep1−C4, C1−Ep4, and Ep1−Ep4. (To
see a printout of all 1-1, 1-2, 1-3 and 1-4 interactions set verbose=1.) These
interactions are masked out of nonbonds. Thus the amber mask list is rebuilt
from these 1-1, 1-2, 1-3 and 1-4 pairs.

A separate list of 1-4 nonbonds is then compiled. This list does not agree in
general with the above 1-4, since a 1-4 could also be a 1-3 if its in a ring. The
rules in EPHI() are used to see who is included:

DO 700 JN = 1,MAXLEN

I3 = IP(JN+IST)

K3T = KP(JN+IST)

L3T = LP(JN+IST)

IC0 = ICP(JN+IST)

IDUMI = ISIGN(1,K3T)

IDUML = ISIGN(1,L3T)

KDIV = (2+IDUMI+IDUML)/4

L3 = IABS(L3T)

FMULN = FLOAT(KDIV)*FMN(IC0)

C

II = (I3+3)/3

JJ = (L3+3)/3

IA1 = IAC(II)

IA2 = IAC(JJ)

IBIG = MAX0(IA1,IA2)

ISML = MIN0(IA1,IA2)

IC = IBIG*(IBIG-1)/2+ISML

C

C ----- CALCULATE THE 14-EEL ENERGY -----

C

R2 = FMULN/CT(JN)

R1 = SQRT(R2)

...........

so a pair in the 1-4 list is included if kdiv is > 0 and so is FMN(ic0); this is
decided at startup. This decision logic is applied to the parent atoms, and if
they are included, so are extra points attached. That is, in the above situation,
if C1 and C4 pass the test, then C1−C4, Ep1−C4, C1−Ep4, and Ep1−Ep4 are
included. Dihedrals involving the extra points are not tested since the decision
is based solely on parent atoms.

The list of 1-4 nonbonds is also spit out if verbose=1.

2/28/02

SANDER Input section ONE Page 102

5.6.17. Polarizable potentials
The following parameters are relevant forpolarizable potentials, that is, whenipol is set to

1 in the &cntrl namelist. Currently polarizability can be run withew_type=1 or 2 and with
frc_int=0 or 1. These variables are set in the&ewald namelist.

INDMETH If indmeth is 0 1 or 2, the nonbond force is called iteratively until successive
estimates of the induced dipoles agree to within DIPTOL (default 0.0001
debye) in the root mean square sense. The difference between indmeth = 0,1,
or 2 have to do with the level of extrapolation (1-st, 2nd or 3rd-order) used
from previous time steps for the initial guess for dipoles to begin the iterative
loop. So far 2nd order (indmeth=1) seems to work best.

If indmeth = 3, use a Car-Parinello scheme wherein dipoles are assigned a fic-
titious mass and integrated each time step. This is much more efficient and is
the current default. Note that this method is unstable for dt > 1 fs.

DIPTOL Convergence criterion for dipoles in the iterative methods. Default is 0.0001
Debye.

MAXITER For iterative methods (indmeth<3), this is the maximum number of iterations
allowed per time step. Default is 20.

DIPMASS The fictitious mass assigned to dipoles. Default value is 0.33, which works
well for 1fs time steps. If dipmass is set much below this, the dynamics are
rapidly unstable. If set much above this the dynamics of the system are
affected.

DIPTAU This is used for temperature control of the dipoles (for indmeth=3). Ifdiptau
is greater than 10 (ps units) temperature control of dipoles is turned off.
Experiments so far indicate that running the system in NVE with no tempera-
ture control on induced dipoles leads to a slow heating, barely noticeable on
the 100ps time scale. For runs of length 10ps, the energy conservation with
this method rivals that of SPME for standard fixed charge systems. For long
runs, we recommend setting a weak temperature control (e.g. 9.99 ps) on
dipoles as well as on the atoms. Note that to achieve good energy conservation
with iterative method, the diptol must be below 10−7 debye, which is much
more expensive. Default is 11 ps (i.e.default is turned off).

IRSTDIP If indmeth=3, a restart file for dipole positions and velocities is written along
with the restart for atomic coordinates and velocities. If irstdip=1, the dipolar
positions and velocities from the inpdip file are read in. If irstdip=0, an itera-
tive method is used for step 1, after which Car-Parrinello is used.

SCALDIP To scale 1-4 charge-dipole and dipole-dipole interactions the same as 1-4
charge-charge (i.e. divided by scee) set scaldip=1 (default). If scaldip=0 the
1-4 charge-dipole and dipole-dipole interactions are treated the same as other
dipolar interactions (i.e. divided by 1).

2/28/02

SANDER Input section ONE Page 103

5.6.18. Free energies using thermodynamic integration
Sander has the capability of doing simple thermodynamic free energy calculations, using

either PME or generalized Born potentials.

ICFE When this is set to 1, information useful for doing thermodynamic integration
estimates of free energy changes will be computed. For the default value of
zero, nothing is done, and you use the usual prmtop file created withsaveAm-
berParm. If this option is set to 1, you must read in a "perturbation" prmtop
file, created with the LEaP commandsaveAmberParmPert. Then a mixing
parameterλ is used (see Eqs. 4 and 5, below) to interpolate between the
"unperturbed" and "perturbed" potential functions.

CLAMBDA The value ofλ for this run, as in Eqs. (4) and (5), below. Zero corresponds to
the unperturbed Hamiltonian in the prmtop file;λ =1 corresponds to the per-
turbed Hamiltonian defined in LEaP. (Note that this is the opposite to the con-
vention used ingibbs, but agrees with standard conventions in the literature.)
Default is 0; that is, the system is run with the unperturbed Hamiltonian.

KLAMBDA The exponent in Eq. (5), below.

Unlike gibbs, the program itself does not compute free energies; it is up to the user to com-
bine the output of several runs (at different values ofλ) and to numerically estimate the integral:

(1)∆A ≡ A(λ = 1) − A(λ = 0) =
1

0
∫ 〈∂V/∂λ 〉λ dλ

If you understand how free energies work, this should not be at all difficult. However, since the
actual values ofλ that are needed, and the exact method of numerical integration, depend upon
the problem and upon the precision desired, we have not tried to pre-code these into the program.

The simplest numerical integration is to evaluate the integrand at the midpoint:

(2)∆A ≈ 〈∂V/∂λ 〉 1
2

This might a good first thing to do to get some picture of what is going on, but is only expected to
be accurate for very smooth or small changes, such as changing just the charges on some atoms.
Gaussian quadrature formulas of higher order are generally more useful:

(3)∆A ≈
n

i=1
Σ wi 〈∂V/∂λ 〉λ i

Some weights and quadrature points are given in the accompanying table; other formulas are pos-
sible [53], but the Gaussian ones listed there are probably the most useful. The formulas are
always symmetrical aboutλ = 0.5, so thatλ a

i andλ b
i both have the same weight. For example, if

you wanted to use 5-point quadrature, you would need to run fivesander jobs, settingλ to
0.04691, 0.23076, 0.5, 0.76923, and 0.95308 in turn. (Each value ofλ should have an equilibra-
tion period as well as a sampling period; this can be achieved by setting thentaveparameter.)
You would then multiply the values of <∂V/∂λ > by the weights listed in the Table, and compute
the sum.

Whenicfe=1 andklambdahas its default value of 1, the simulation uses the mixed potential
function:

2/28/02

SANDER Input section ONE Page 104

Abcissas and weights for Gaussian integration
n λ a

i λ b
i wi

1 0.50000 1.00000

2 0.21132 0.78867 0.50000

3 0.11270 0.88729 0.27777
0.50000 0.44444

5 0.04691 0.95308 0.11846
0.23076 0.76923 0.23931
0.50000 0.28444

7 0.02544 0.97455 0.06474
0.12923 0.87076 0.13985
0.29707 0.70292 0.19091
0.50000 0.20897

9 0.01592 0.98408 0.04064
0.08198 0.91802 0.09032
0.19331 0.80669 0.13031
0.33787 0.66213 0.15617
0.50000 0.16512

12 0.00922 0.99078 0.02359
0.04794 0.95206 0.05347
0.11505 0.88495 0.08004
0.20634 0.79366 0.10158
0.31608 0.68392 0.11675
0.43738 0.56262 0.12457

(4)V(λ) = (1 − λ)V0 + λV1

whereV0 is the potential with the original Hamiltonian, andV1 is the potential with the perturbed
Hamiltonian. The program also computes and prints∂V/∂λ and its averages; note that in this
case,∂V/∂λ = V1 − V0. This is referred to as linear mixing, and is often what you want unless
you are making atoms appear or disappear. If some of the perturbed atoms are "dummy" atoms
(with no van der Waals terms, so that you are making these atoms "disappear" in the perturbed
state), the integrand in Eq. (1) diverges atλ = 1; this is a mild enough divergence that the overall
integral remains finite, but it still requires special numerical integration techniques to obtain a
good estimate of the integral [54]. Sander implements one simple way of handling this problem:
if you setklambda> 1, the mixing rules are:

(5)V(λ) = (1 − λ)kV0 + [1 − (1 − λ)k]V1

wherek is given byklambda. Note that this reduces to Eq. (4) whenk = 1, which is the default.
If klambda≥ 4, the integrand remains finite asλ → 1 [54], so that settingklambda= 4 with dis-
appearing atoms should work well with Gaussian quadrature methods.

2/28/02

SANDER Input section ONE Page 105

Notes:

(1) This capability insanderis implemented by calling the force() routine twice on each step,
once forλ =0 and once forλ =1. This increases the cost of the simulation, but involves
extremely simple coding.

(2) Eq. (5) is designed for having dummy atoms in the perturbed Hamiltonian, and "real"
atoms in the regular Hamiltonian. You must ensure that this is the case when you set up
the system in LEaP. There is currently no facility to have dummy atoms in bothV0 and in
V1; you would need to usegibbsfor situations like this.

(3) In the GB model there is no provision for mutating the Born radii or the GB screening
parameters. Hence, the principal application for GB simulations will probably be to
charging free energies, where just the atomic charges are varying. One prime example
would be for pKa calculations, where the charges are mutated from the protonated to the
deprotonated form. Since H atoms bonded to oxygen already have zero van der Waals
radii (in the Amber force fields and in TIP3P water), once their charge is removed (in the
depronated form) they are really then like dummy atoms. [Note that, for this special situ-
ation, there is no need to useklambda> 1: since the van der Waals terms are missing from
both the perturbed and unperturbed states, the proton’s position can never lead to the large
contributions to <V1 − V0 > that can occur when one is changing from a zero van der
Waals term to a finite one.]

(4) Users should also be aware that this option has not been extensively tested. It might be
wise to run a short thermodynamic perturbation calculation in gibbs and to compare the
results to sander. In spite of the performance hit cited above, putting this facility in
Amber allows us to use the generalized Born model, and to take advantage of
improvements in PME and parallelization that are not in gibbs.

2/28/02

SANDER Input section TWO Page 106

5.7. SECTION TWO: Weight change information.
This section of information is read (if NMROPT > 0) as a series of namelist specifications,

with name "&wt ". This namelist is read repeatedly until a namelist&wt statement is found with
TYPE=END.

Overview of weight change variables
variable description

TYPE Defines quantity being varied; valid options are list-
ed below.

ISTEP1,ISTEP2 This change is applied over steps/iterations ISTEP1
through ISTEP2. If ISTEP2 = 0, this change will
remain in effect from step ISTEP1 to the end of the
run at a value of VALUE1 (VALUE2 is ignored in
this case).(default= both 0)

VALUE1,VALUE2 Values of the change corresponding to ISTEP1 and
ISTEP2, respectively. If ISTEP2=0, the change is
fixed at VALUE1 for the remainder of the run, once
step ISTEP1 is reached.

IINC If IINC > 0, then the change is applied as a step
function, with IINC steps/iterations between each
change in the target VALUE (ignored if ISTEP2=0).
If IINC =0, the change is done continuously.(de-
fault=0)

IMULT If IMULT=0, then the change will be linearly inter-
polated from VALUE1 to VALUE2 as the step
number increases from ISTEP1 to ISTEP2.(de-
fault)

If IMULT=1, then the change will be effected by a
series of multiplicative scalings, using a single fac-
tor, R, for all scalings. i.e.

VALUE2 = (R**INCREMENTS) * VALUE1.
INCREMENTS is the number of times the target
value changes, which is determined by ISTEP1, IS-
TEP2, and IINC.

2/28/02

SANDER Input section TWO Page 107

The remainder of this section describes the options for the TYPE parameter. For a few
types of cards, the meanings of the other variables differ from that described above; such differ-
ences are noted below. Valid Options for TYPE (you must use uppercase) are:

BOND Varies the relative weighting of bond energy terms.

ANGLE Varies the relative weighting of valence angle energy terms.

TORSION Varies the relative weighting of torsion (and J-coupling) energy terms. Note
that any restraints defined in the input to the PARM program are included in
the above. Improper torsions are handled separately (IMPROP).

IMPROP Varies the relative weighting of the "improper" torsional terms. These are not
included in TORSION.

VDW Varies the relative weighting of van der Waals energy terms. This is equiv-
alent to changing the well depth (epsilon) by the given factor.

HB Varies the relative weighting of hydrogen-bonding energy terms.

ELEC Varies the relative weighting of electrostatic energy terms.

NB Varies the relative weights of the non-bonded (VDW, HB, and ELEC) terms.

ATTRACT Varies the relative weights of the attractive parts of the van der waals and h-
bond terms.

REPULSE Varies the relative weights of the repulsive parts of the van der waals and h-
bond terms.

RSTAR Varies the effective van der Waals radii for the van der Waals (VDW) interac-
tions by the given factor. Note that this is done by changing the relative attrac-
tive and repulsive coefficients, so ATTRACT/REPULSE should not be used
over the same step range as RSTAR.

SOFTR Varies the soft-repulsion non-bond force constant. Has no effect if
ISFTRP.LE.0.

INTERN Varies the relative weights of the BOND, ANGLE and TORSION terms.
"Improper" torsions (IMPROP) must be varied separately.

ALL Varies the relative weights of all the energy terms above (BOND, ANGLE,
TORSION, VDW, HB, and ELEC; does not affect RSTAR or IMPROP).

REST Varies the relative weights of *all* the NMR restraint energy terms.

RESTS Varies the weights of the "short-range" NMR restraints. Short- range restraints
are defined by the SHORT instruction (see below).

RESTL Varies the weights of any NMR restraints which are not defined as "short
range" by the SHORT instruction (see below). When no SHORT instruction is
given, RESTL is equivalent to REST.

NOESY Varies the overall weight for NOESY volume restraints. Note that this value
multiplies the individual weights read into the "awt" array. (Only if
NMROPT=2; see Section 4 below).

SHIFTS Varies the overall weight for chemical shift restraints. Note that this value
multiplies the individual weights read into the "wt" array. (Only if
NMROPT=2; see section 4 below).

SHORT Defines the short-range restraints. For this instruction, ISTEP1, ISTEP2,
VALUE1, and VALUE2 have different meanings. A short-range restraint can

2/28/02

SANDER Input section TWO Page 108

be defined in two ways.

(1) If the residues containing each pair of bonded atoms comprising the
restraint are close enough in the primary sequence:

ISTEP1≤ ABS(delta_residue)≤ ISTEP2,
where delta_residue is the difference in the numbers of the residues contain-
ing the pair of bonded atoms.

(2) If the distances between each pair of bonded atoms in the restraint fall
within a prescribed range:

VALUE1 ≤ distance≤ VALUE2.
Only one SHORT command can be issued, and the values of ISTEP1,
ISTEP2, VALUE1, and VALUE2 remain fixed throughout the run. However,
if IINC>0, then the short-range interaction list will be re-evaluated every IINC
steps.

TGTRMSD Varies the RMSD target value for targeted MD.

TEMP0 Varies the target temperature TEMP0.

TEMP0LES Varies the LES target temperature TEMP0LES.

TA UTP Varies the coupling parameter, TAUTP, used in temperature scaling when tem-
perature coupling options NTT=1 is used.

CUT Varies the non-bonded cutoff distance.

NSTEP0 If present, this instruction will reset the initial value of the step counter
(against which ISTEP1/ISTEP2 and NSTEP1/NSTEP2 are compared) to the
value ISTEP1. An NSTEP0 instruction only has an effect at the beginning of a
run. For this card (only) ISTEP2, VALUE1, VALUE2 and IINC are ignored.
If this card is omitted, NSTEP0 = 0. This card can be useful for simulation
restarts, where NSTEP0 is set to the final step on the previous run.

STPMLT If present, the NMR step counter will be changed in increments of STPMLT
for each actual dynamics step. For this card, only VALUE1 is read. ISTEP1,
ISTEP2, VALUE2, IINC, and IMULT are ignored. Default = 1.0.

DISAVE

ANGAVE

TORAVE If present, then by default time-averaged values (rather than instantaneous val-
ues) for the appropriate set of restraints will be used. DISAVE controls dis-
tance data, ANGAVE controls angle data, TORAVE controls torsion data.

See below for the functional form used in generating time-averaged data.

For these cards: VALUE1 =τ (characteristic time for exponential decay)
VALUE2 = POWER (power used in averaging; the nearest integer of value2 is
used)

Note that the range (ISTEP1→ISTEP2) applies only to TAU; The value of
POWER is not changed by subsequent cards with the same ITYPE field, and
time-averaging will always be turned on for the entire run if one of these cards
appears.

Note also that, due to the way that the time averaged internals are calculated,
changingτ at any time after the start of the run will only affect the relative
weighting of steps occurring after the change inτ .

2/28/02

SANDER Input section TWO Page 109

Separate values forτ and POWER are used for bond, angle, and torsion aver-
aging.

The default value ofτ (if it is 0.0 here) is 1.0D+6, which results in no expo-
nential decay weighting. Any value ofτ ≥ 1.D+6 will result in no exponential
decay.
If DISAVE,ANGAVE, or TORAVE is chosen, one can still force use of an
instantaneous value for specific restraints of the particular type (bond, angle,
or torsion) by setting the IFNTYP field to "1" when the restraint is defined
(IFNTYP is defined in section 3 below).
If time-averaging for a particular class of restraints is being performed, all
restraints of that class that are being averaged (that is, all restraints of that
class except those for which IFNTYP=1) *must* have the same values of
NSTEP1 and NSTEP2 (NSTEP1 and NSTEP2 are defined below).

(For these cards, IINC and IMULT are ignored)

See the discussion of time-averaged restraints following the input descrip-
tions.

DISAVI

ANGAVI

TORAVI ISTEP1: Ignored.

ISTEP2: Sets IDMPAV . If IDMPAV > 0,and a dump file has been specified
(DUMPAVE is set in the file redirection section below), then the time-aver-
aged values of the restraints will be written every IDMPAV steps. Only one
value of IDMPAV can be set (corresponding to the first DIS-
AVI/ANGAVI/TORAVI card with ISTEP2 > 0), andall restraints (even those
with IFNTYP=1) will be "dumped" to this file every IDMPAV steps. The val-
ues reported reflect the current value ofτ .

VALUE1: The integral which gives the time-averaged values is undefined for
the first step. By default, for each time-averaged internal, the integral is
assigned the current value of the internal on the first step. If VALUE1≠0, this
initial value of internal r is reset as follows:

-1000. < VALUE1 < 1000.: Initial value = r_initial + VALUE

VALUE1 <= -1000.: Initial value = r_target + 1000.

1000. <= VALUE1 : Initial value = r_target - 1000.

r_target is the target value of the internal, given by R2+R3 (or just R3, if R2 is
0). VALUE1 is in angstroms for bonds, in degrees for angles.

VALUE2: This field can be used to set the value ofτ used in calculating the
time-averaged values of the internal restraints reported at the end of a simula-
tion (if LISTOUT is specified in the redirection section below). By default,
no exponential decay weighting is used in calculating the final reported val-
ues, regardless of what value ofτ was used during the simulation. If
VALUE2>0, thenτ = VALUE2 will be used in calculating these final reported
av erages. Note that the value of VALUE2 =τ specified here only affects the
reported averaged values in at the end of a simulation. It does not affect the
time-averaged values used during the simulation (those are changed by the

2/28/02

SANDER Input section TWO Page 110

VALUE1 field of DISAVE, ANGAVE and TORAVE instructions).

IINC: If IINC = 0, then forces for the class of time-averaged restraints will be
calculated exactly as (dE/dr_ave) (dr_ave/dx). If IINC = 1, then then forces
for the class of time-averaged restraints will be calculated as (dE/dr_ave)
(dr(t)/dx). Note that this latter method results in a non-conservative force, and
does not integrate to a standard form. But this latter formulation helps avoid
the large forces due to the (1+i) term in the exact derivative calculation--and
may avert instabilities in the molecular dynamics trajectory for some systems.
See the discussion of time-averaged restraints following the input description.

Note that the DISAVI, ANGAVI, and TORAVI instructions will have no affect
unless the corresponding time average request card (DISAVE, ANGAVE or
TORAVE, respectively) is also present.

(For these cards, ISTEP1 and IMULT are ignored).

If formatted input is being read (&formwt was specified), any line which
starts with a pound symbol (#) is considered a comment line, and will be
skipped.

END END of this section.

NOTES:

(1) All weights are relative to a default of 1.0 in the standard force field.

(2) Weights are not cumulative.

(3) For any range where the weight of a term is not modified by the above, the weight reverts
to 1.0. For any range where TEMP0, SOFTR or CUTOFF is not specified, the value of
the relevant constant is set to that specified in the input file.

(4) If a weight is set to 0.0, it is set internally to 1.0D-7. This can be overridden by setting
the weight to a negative number. In this case, a weight of exactly 0.0 will be used.How-
ever,if any weight is set to exactly 0.0, it cannot be changed again during this run of the
program.

(5) If two (or more) cards change a particular weight over the same range, the weight given
on the last applicable card will be the one used.

(6) Once any weight change for which NSTEP2=0 becomes active (i.e. one which will be
effective for the remainder of the run), the weight of this term cannot be further modified
by other instructions.

(7) Changes to RSTAR result in exponential weighting changes to the attractive and repulsive
terms (proportional to the scale factor**6 and **12, respectively). For this reason, scaling
RSTAR to a very small value (e.g.≤0.1) may result in a zeroing-out of the vdw term.

2/28/02

SANDER Input section THREE Page 111

5.8. SECTION THREE: File redirection commands.
Input/output redirection information can be read as described here. Redirection cards must

follow the end of the SECTION TWO input. Redirection card input is terminated by the first
non-blank line which does not start with a recognized redirection TYPE (e.g. LISTIN, LISTOUT,
etc.).

The format of the redirection cards is
TYPE = filename

where TYPE is any valid redirection keyword (see below), and filename is any character string.
The equals sign ("=") is required, and TYPE must be given inuppercaseletters.

Valid redirection keywords are:

LISTIN An output listing of the restraints which have been read, and their deviations
from the target distancesbeforethe simulation has been run. By default, this
listing is not printed. If POUT is used for the filename, these deviations will
be printed in the normal output file.

LISTOUT An output listing of the restraints which have been read, and their deviations
from the target distances_after the simulation has finished. By default, this
listing is not printed. If POUT is used for the filename, these deviations will
be printed in the normal output file.

DISANG The file from which the distance and angle restraint information described
below (Section 4) will be read.

NOESY File from which NOESY volume information (Section 5), if any, will be read.

SHIFTS File from which chemical shift information (Section 6), if any, will be read.

PCSHIFT File from which paramagnetic shift information (Section 6), if any, will be
read.

DIPOLE File from which residual dipolar couplings (Section 7), if any, will be read.

DUMPAVE File to which the time-averaged values of all restraints will be written, if DIS-
AVI / ANGAVI / TORAVI has been used to set IDMPAV≠0. If either IDM-
PAV has not been set, or DUMPAVE is not specified, this file will not be writ-
ten.

2/28/02

SANDER Input section FOUR Page 112

5.9. SECTION FOUR: Distance, angle and torsional restraints.
Distance and angle restraints are read from the DISANG file ifnmropt> 0. Namelist rst

("&rst ") contains the following variables; it is read repeatedly until a namelist&rst statement
is found with IAT(1)=0, or until reaching the end of the DISANG file.

Any empty DISANG file is sometimes useful, if you wish to include weight changes but
have no internal angle constraints. Note that, unlike earlier versions of Amber, the&rst
namelists should be in the DISANG file, and not in themdinfile.

In many cases, the user will not prepare this section of the input by hand, but will use the
auxiliary programsmakeDIST_RST, makeANG_RSTand makeCHIR_RSTto prepare input from
simpler files.

Variables in the&rst namelist:

IAT(1)→IAT(4) If IRESID = 0 (normal operation):

The atoms defining the restraint. If IAT(3)≤0, this is a distance
restraint. If IAT(4)≤0, this is an angle restraint. Otherwise, this is a
torsional (or J-coupling, if desired) restraint.

If this is a distance restraint, and IAT1 <0, then a group of atoms is
defined below, and the coordinate-averaged position of this group
will be used in place of the coordinates of atom 1 [IAT(1)]. Simi-
larly, if IAT(2) < 0, a group of atoms will be defined below whose
coordinate-averaged position will be used in place of the coordinates
for atom 2 [IAT(2)].

If IRESID=1:

IAT(1) → IAT(4) point to the numbers of the *residues* containing
the atoms comprising the internal. Residue numbers are the absolute
numbers in the entire system. In this case, the variables ATNAM(1)
→ ATNAM(4) must be specified, and give the character names of the
desired atoms within the respective residues.

If IAT(1) < 0 or IAT(2) < 0, then group input will still be read in
place of the corresponding atom, as described below.

Defaults for IAT(1)→IAT(4) are 0.

ATNAM If IRESID = 1, then the character names of the atoms defining the internal are
contained in ATNAM(1)→ATNAM(4). Residue IAT(1) is searched for atom
name ATNAM(1); residue IAT(2) is searched for atom name ATNAM(2); etc.
On machines using the portable namelist code, the form is
atnam(1)=’AT1’,atnam(2)=’AT2’ etc, otherwise the form atnam=’AT1’,’AT2’
etc can be used.

Defaults for ATNAM(1)→ATNAM(4) are ’ ’.

IRESID Indicates whether IAT(I) points to an atom # or a residue #. See descriptions
of IAT() and ATNAM() above.

Default = 0.

NSTEP1

2/28/02

SANDER Input section FOUR Page 113

NSTEP2 This restraint is applied for steps/iterations NSTEP1 through NSTEP2. If
NSTEP2 = 0, the restraint will be applied from NSTEP1 through the end of
the run. Note that the first step/iteration is considered step zero (0).

Defaults for NSTEP1, NSTEP2 are both 0.

IRSTYP Normally, the restraint target values defined below (R1→R4) are used
directly. If IRSTYP = 1, the values given for R1→R4 define relative displace-
ments from the current value (value determined from the starting coordinates)
of the restrained internal. For example, if IRSTYP=1, the current value of a
restrained distance is 1.25, and R1 (below) is -0.20, then a value of R1=1.05
will be used.

Default is IRSTYP=0.

IALTD Determines what happens when a distance restraint gets very large. If
IALTD=1, then the potential "flattens out", and there is no force for large vio-
lations; this allows for errors in constraint lists, but might tend to ignore con-
straints thatshouldbe included to pull a bad initial structure towards a more
correct one. When IALTD=0 the penalty energy continues to rise for large
violations. See below for the detailed functional forms that are used for dis-
tance restraints. Set IALTD=0 to recover the behavior of earlier versions of
sander. Default value is 0, or the last value that was explicitly set in a previ-
ous restraint. This value is set to 1 ifmakeDIST_RSTis called with the-altdis
flag.

IFVARI If IFVARI > 0, then the force constants/positions of the restraint will vary
with step number. Otherwise, they are constant throughout the run. If IFVARI
>0, then the values R1A→R4A, RK2A, and RK3A must be specified (see
below).

Default is IFVARI=0.

NINC If IFVARI > and NINC > 0, then the change in the target values of of R1→R4
and K2,K3 is applied as a step function, with NINC steps/ iterations between
each change in the target values. If NINC = 0, the change is effected continu-
ously (at every step).

Default for NINC is the value assigned to NINC in the most recent namelist
where NINC was specified. If NINC has not been specified in any namelist, it
defaults to 0.

IMULT If IMULT=0, and the values of force constants RK2 and RK3 are changing
with step number, then the changes in the force constants will be linearly
interpolated from rk2→rk2a and rk3→rk3a as the step number changes.

If IMULT=1 and the force constants are changing with step number, then the
changes in the force constants will be effected by a series of multiplicative
scalings, using a single factor, R, for all scalings.i.e.

rk2a = R**INCREMENTS * rk2
rk3a = R**INCREMENTS * rk3.

INCREMENTS is the number of times the target value changes, which is
determined by NSTEP1, NSTEP2, and NINC.

Default for IMULT is the value assigned to IMULT in the most recent
namelist where IMULT was specified. If IMULT has not been specified in any

2/28/02

SANDER Input section FOUR Page 114

namelist, it defaults to 0.

R1→R4

RK2,RK3

R1A→R4A

RK2A,RK3A If IALTD=0, the restraint is a well with a square bottom with parabolic sides
out to a defined distance, and then linear sides beyond that. Force constants
are in units of kcal/mol. If R is the value of the restraint in question:

R < r1 Linear, with the slope of the "left-hand" parabola at the point R=r1.

r1 <= R < r2 Parabolic, with force constant k2. E=0 at R=r2.

r2 <= R < r3 E = 0.

r3 <= R < r4 Parabolic, with force constant K3. E=0 at R=r3.

r4 <= R Linear, with the slope of the "right-hand" parabola at the point
R=r4.

For torsional restraints, the value of the torsion is translated by +-n*360, if
necessary, so that it falls closest to the mean of r2 and r3.

Specified distances are in Angstroms. Specified angles are in degrees. Force
constants for distances are in kcal/mol-Å2 Force constants for angles are in
kcal/mol-rad2. (Note that angle positions are specified in degrees, but force
constants are in radians, consistent with typical reporting procedures in the lit-
erature).

If IALTD=1, distance restraints are interpreted in a slightly different fashion.
Again, If R is the value of the restraint in question:

R < r2 Parabolic, with force constant k2. E=0 at R=r2.

r2 <= R < r3 E = 0.

r3 <= R < r4 Parabolic, with force constant k3. E=0 at R=r3.

r4 <= R Hyperbolic, with energy k3*[b/(R-r3) + a], wherea = 3(r4 − r3)2

and b = − 2(r4 − r3)3. This function matches smoothly to the
parabola at R = r3, and tends to an asymptote ofak3 are large R.
The functional form is adapted from that suggested by Michael
Nilges,Prot. Eng.2, 27-38 (1988). Note that if IALTD=1, the value
of r1 is ignored.

IFVARI = 0 The values of r1→r4, rk2, and rk3 will remain constant
throughout the run.

IFVARI > 0 The values r1a, r2a, r3a, r4a, r2ka and r3ka are also used.
These variables are defined as for r1→r4 and rk2, rk3, but
correspond to the values appropriate for NSTEP =
NSTEP2: e.g., if IVARI >0, then the value of r1 will vary
between NSTEP1 and NSTEP2, so that, e.g. r1(NSTEP1)
= r1 and r1(NSTEP2) = r1a. Note that yourmustspecify
an explicit value fornstep1and nstep2 if you use this
option.

Defaults for r1→r4,rk2,rk3,r1a→r4a,rk2a and rk3a are the values assigned
to them in the most recent namelist where they were specified. They should

2/28/02

SANDER Input section FOUR Page 115

always be specified in the first&rst namelist.

(IGR1(i),i=1→200)
If IAT(1) < 0 and IAT(3)=IAT(4)=0, then IGR1() gives the atoms defining the
group whose coordinate averaged position is used to define "atom 1" in a dis-
tance restraint. If IRESID = 0, absolute atom numbers are specified by the
elements of IGR1(). If IRESID = 1, then IGR1(I) specifies the number of the
residue containing atom I, and the name of atom I must be specified using
GRNAM1(I). A maximum of 200 atoms are allowed in any group. Only
specify those atoms which are needed.

RJCOEF(1)→RJCOEF(3)
By default, 4-atom sequences specify torsional restraints. It is also possible to
impose restraints on the vicinal3J-coupling value related to the underlying
torsion. J is related to the torsionτ by the approximate Karplus relationship:
J = Acos2(τ) + B cos(τ) + C. If you specify a non-zero value for either
RJCOEF(1) or RJCOEF(2), then a J-coupling restraint, rather than a torsional
restraint, will be imposed. At every MD step, J will be calculated from the
Karplus relationship with A = RJCOEF(1), B = RJCOEF(2) and C =
RJCOEF(3). In this case, the target values (R1->R4, R1A->R4A) and force
constants (RK2, RK3, RK2A, RK3A) refer to J-values for this restraint.
RJCOEF(1)->RJCOEF(3) must be set individually for each torsion for which
you wish to apply a J-coupling restraint, and RJCOEF(1)->RJCOEF(3) may
be different for each J-coupling restraint.

With respect to other options and reporting, J-coupling restraints are treated
identically to torsional restraints. This means that if time-averaging is
requested for torsional restraints, it will apply to J-coupling restraints as well.
The J-coupling restraint contribution to the energy is included in the "tor-
sional" total. And changes in the relative weights of the torsional force con-
stants also change the relative weights of the J-coupling restraint terms.

Setting RJCOEF has no effect for distance and angle restraints.

Defaults for RJCOEF(1)->RJCOEF(3) are 0.0.

(IGR2(i),i=1→200)
If IAT(2) < 0 and IAT(3)=IAT(4)=0, then IGR1 gives the atoms defining the
group whose coordinate averaged position is used to define "atom 2" in a dis-
tance restraint. If IRESID = 0, absolute atom numbers are specified by the
elements of IGR2(). If IRESID = 1, then IGR2(I) specifies the number of the
residue containing atom I, and the name of atom I must be specified using
GRNAM1(I). A maximum of 200 atoms are allowed in any group. Only
specify those atoms which are needed.

Default value for any unspecified element of IGR1 or IGR2 is 0.

(GRNAM1(i),i=1→200)

(GRNAM2(i),i=1→200)
If group input is being specified (IAT(1) or IAT(2) < 0 and IAT(3)=IAT(4)=0),
and IRESID = 1, then the character names of the atoms defining the group are
contained in GRNAM1(i) or GRNAM2(i)), as described above. In the case
IAT(1) < 0, each residue IGR1(i) is searched for an atom name GRNAM1(i)
and added to the first group list. In the case IAT(2) < 0, each residue IGR2(i)

2/28/02

SANDER Input section FOUR Page 116

is searched for an atom name GRNAM2(i) and added to the second group list.

Defaults for GRNAM1(i) and GRNAM2(i) are ’ ’.

IR6 If a group coordinate-averaged position is being used (see IGR1 and IGR2
above), the average position can be calculated in either of two manners: If IR6
= 0, center-of-mass averaging will be used. If IR6=1, the <r −6 >−1/6 av erage
of all interaction distances to atoms of the group will be used.

Default for IR6 is the value assigned to IR6 in the most recent namelist where
IR6 was specified. If IR6 has not been specified in any namelist, it defaults to
0.

IFNTYP If time-averaged restraints have been requested (see DIS-
AVE/ANGAVE/TORAVE above), they are, by default, applied to all restraints
of the class specified. Time-averaging can be overridden for specific internals
of that class by setting IFNTYP for that internal to 1. IFNTYP has no effect if
time-averaged restraint are not being used.

Default value is IFNTYP=0.

IXPK

NXPK These are user-defined integers than can be set for each constraint. They are
typically the "peak number" and "spectrum number" associated with the
cross-peak that led to this particular distance restraint. Nothing is ever done
with them except to print them out in the "violation summaries", so that NMR
people can more easily go from a constraint violation to the corresponding
peak in their spectral database. Default values are zero.

Namelist&rst is read for each restraint. Restraint input ends when a namelist statement with
iat(1) = 0 (or iat(1) not specified) is found. Note that comments can precede or follow any
namelist statment, allowing comments and restraint definitions to be freely mixed.

2/28/02

SANDER Input section FIVE Page 117

5.10. SECTION FIVE: NOESY volume restraints.
After the previous section, NOESY volume restraints may be read. This data described in

this section is only read if NMROPT = 2. The molecule may be broken in overlapping sub-
molecules, in order to reduce time and space requirements. Inputfor each submoleculeconsists
of namelist "&noeexp ", followed immediatelyby standard AMBER "group" cards defining the
atoms in the submolecule. In addition to the submolecule input ("&noeexp "), you may also
need to specify some additional variables in thecntrl namelist in section ONE; see the "NMR
variables" description in that section.

In many cases, the user will not prepare this section of the input by hand, but will use the
auxiliary programmakeVOL_RSTto prepare input from simpler files.

Variables in the&noeexp namelist:

For each submolecule, the namelist "&noeexp " is read (either fromstdin or from the NOESY
redirection file) which contains the following variables. There are no effective defaults fornpeak,
emix, ihp, jhp,andaexp: you must specify these.

NPEAK(imix) Number of peaks for each of the "imix" mixing times; if the last mixing time
is mxmix, set NPEAK(mxmix+1) = -1. End the input when NPEAK(1) < 0.

EMIX (imix) Mixing times (in seconds) for each mixing time.

IHP(imix,ipeak)

JHP(imix,ipeak) Atom numbers for the atoms involved in cross-peak "ipeak" at mixing time
"imix"

AEXP(imix,ipeak) Experimental target integrated intensity for this cross peak. If AEXP is neg-
ative, this cross peak is part of a set of overlapped peaks. The computed
intensity is added to the peak that follows; the next time a peak with AEXP >
0 is encountered, the running sum for the calculated peaks will be compared
to the value of AEXP for that last peak in the list. In other words, a set of
overlapped peaks is represented by one or more peaks with AEXP < 0 fol-
lowed by a peak with AEXP > 0. The computed total intensity for these
peaks will be compared to the value of AEXP for the final peak.

ARANGE(imix,ipeak)
"Uncertainty" range for this peak: if the calculated value is within±ARANGE
of AEXP, then no penalty will be assessed. Default uncertainties are all zero.

AWT(imix,ipeak) Relative weight for this cross peak. Note that this will be multiplied by the
overall weight given by the NOESY weight change cards in the weight
changes section (Section 1). Default values are 1.0, unless
INVWT1,INVWT2 are set (see below), in which case the input values of
AWT are ignored.

INVWT1,INVWT2
Lower and upper bounds on the weights for the peaks respectively, such that
the relative weight for each peak is 1/intensity if 1/intensity lies between the
lower and upper bounds. This is the intensity after being scaled byoscale.
The inverse weighing scheme adopted by this option prevents placing too
much influence on the strong peaks at the expense of weaker peaks and was

2/28/02

SANDER Input section FIVE Page 118

previously invoked using the compilation flag "INVWGT". Default values are
INVWT1=INVWT2=1.0, placing equal weights on all peaks.

OMEGA Spectrometer frequency, in Mhz. Default is 500. It is possible for different
sub-molecules to have different frequencies, but omega will only change
when it is explicitly re-set. Hence, if all of your data is at 600 Mhz, you need
only setomegato 600. in the first submolecule.

TA UROT Rotational tumbling time of the molecule, in nsec. Default is 1.0 nsec. Like
omega, this value is "sticky", so that a value set in one submolecule will
remain until it is explicitly reset.

TA UMET Correlation time for methyl jump motion, in ns. This is only used in comput-
ing the intra-methyl contribution to the rate matrix. The ideas of Woessner
are used, specifically as recommended by Kalk & Berendsen [55]. Default is
0.0001 ns, which is effectively the fast motion limit. The default is consistent
with the way the rest of the rate matrix elements are determined (also in the
fast motion limit,) but probably is not the best value to use, since methyl
groups appear to have T1 values that are systematically shorter than other pro-
tons, and this is likely to arise from the fact that the methyl correlation time
can be near to the inverse of the spectrometer frequency. A value of 0.02 -
0.05 ns is probably better than 0.0001, but this is still an active research area,
and you are on your own here, and should consult the literature for further dis-
cussion [56]. As withomega, taumet can be different for different sub-
molecules, but will only change when it is explicitly re-set.

ID2O Flag for determining if exchangeable protons are to be included in the spin-
diffusion calculation. If ID2O=0 (default) then all protons are included. If
ID2O=1, then all protons bonded to nitrogen or oxygen are assumed to not be
present for the purposes of computing the relaxation matrix. No other options
exist at present, but they could easily be added to the subroutineindexn.
Alternatively, you can manually rename hydrogens in theprmtopfile so that
they do not begin with "H": such protons will not be included in the relaxation
matrix. (Note: for technical reasons, the HOH proton of tyrosine must
always be present, so setting ID2O=1 will not remove it; we hope that this
limitation will be of minor importance to most users.) Theid2o variable
retains its value across namelist reads,i.e. its value will only change if it is
explicitly reset.

OSCALE overall scaling factor between experimental and computed volume units. The
experimental intensities are multiplied byoscalebefore being compared to
calculated intensities. This means that the weights WNOESY and AWT
always refer to "theoretical" intensity scales rather than to the (arbitrary)
experimental units. Theoscale variable retains its value across namelist
reads, i.e. its value will only change if it is explicitly reset. The initial
(default) value is 1.0.

The atom numbersihp and jhp are the absolute atom numbers. For methyl groups, use the
number of the last proton of the group; for the delta and epsilon protons of aromatic rings, use the
delta-2 or epsilon-2 atom numbers. Since this input requires you to know the absolute atom num-
bers assigned by AMBER to each of the protons, you may wish to use the separate
makeVOL_RSTprogram which provides a facility for turning human-readable names into atom
numbers, and also assists in dividing a large molecule into submolecules.

2/28/02

SANDER Input section FIVE Page 119

Following the&noeexp namelist, give the AMBER "group" cards that identify this sub-
molecule. This combination of "&noeexp " and "group" cards can be repeated as often as needed
for many submolecules, subject to the limits described in thenmr.hfile. As mentioned above, this
input section ends when NPEAK(1) < 0, or when and end-of-file is reached.

5.11. SECTION SIX: Chemical shift restraints.
After reading NOESY restraints above (if any), read the chemical shift restraints in namelist

&shf, or the pseudocontact restraints in namelist&pcshift. Reading this input is triggered by the
presence of a SHIFTS or PCSHIFT line in section THREE. In many cases, the user will not pre-
pare this section of the input by hand, but will use the auxiliary programsmakeSHFor fantasian
to prepare input from simpler files.

Variables in the &shf namelist. (Defaults are only available forshrang, wt, nter, andshcut;
you must specify the rest.)

NRING Number of rings in the system.

NATR(i) Number of atoms in thei-th ring.

IATR(j,i) Absolute atom number for thej-th atom of thei-th ring.

NAMR(i) Eight-character string that labels thei-th ring. The first three characters give
the residue name (in caps); the next three characters contain the residue num-
ber (right justified); column 7 is blank; column 8 may optionally contain an
extra letter to distinguish the two rings of trp, or the 5 or 8 rings of the heme
group.

STR(i) Ring current intensity factor for thei-th ring. Older values are summarized by
Cross and Wright [57]; more recent empirical parametrizations seem to give
improved results [58,59].

NPROT Number of protons for which penalty functions are to be set up.

IPROT(i) Absolute atom number of thei-th proton whose shifts are to be evaluated. For
equivalent protons, such as methyl groups or rapidly flipping phenylalanine
rings, enter all two or three atom numbers in sequence; averaging will be con-
trolled by thewt parameter, described below.

OBS(i) Observed secondary shift for thei-th proton. This is typically calculated as
the observed value minus a random coil reference value.

SHRANG(i) "Uncertainty" range for the observed shift: if the calculated shift is within
±SHRANG of the observed shift, then no penalty will be imposed. The
default value is zero for all shifts.

WT(i) Weight to be assigned to this penalty function. Note that this value will be
multiplied by the overall weight (if any) given by the SHIFTS command in
the assignment of weights (above). Default values are 1.0. For sets of equiv-
alent protons, give a neg ative weight for all but the last proton in the group;
the last proton gets a normal, positive value. The av erage computed shift of
the group will be compared toobsentered for the last proton.

2/28/02

SANDER Input section SIX Page 120

SHCUT Values of calculated shifts will be printed only if the absolute error between
calculated and observed shifts is greater than this value.Default = 0.3 ppm.

NTER Resiude number of the N-terminus, for protein shift calculations;default = 1.

CTER Residue number of the C-terminus, for protein shift calculations. Believe it or
not, the current code cannot figure this out for itself.

The PCSHIFT module allows the inclusion of pseudocontact shifts as constraints in energy
minimization and molecular dynamics calculations on paramagnetic molecules. The pseudocon-
tact shift depends on the magnetic susceptibility anisotropy of the metal ion and on the location of
the resonating nucleus with respect to the axes of the magnetic susceptibility tensor. For the
nucleus i, it is given by:

δ i
pc =

j
Σ 1

12πr 3
ij

∆χ j

ax(3n2
ij − 1) + (3/2)∆χ j

rh(l2
ij − m2

ij)

wherel ij , mij , andnij are the direction cosines of the position vector of atom i with respect to the
j-th magnetic susceptibility tensor coordinate system,r ij is the distance between the j-th paramag-
netic center and the proton i,jax and jrh are the axial and the equatorial anisotropies of the mag-
netic susceptibility tensor of the j-th paramagnetic center. For a discussion, see: Lucia Banci,
Ivano Bertini, Giovanni Gori-Savellini, Andrea Romagnoli, Paola Turano, Mauro Andrea Cre-
monini, Claudio Luchinat and Harry B. Gray "Pseudocontact shifts as Constraints for Energy
minimization and molecular dynamics calculations on solution structures of paramagnetic metal-
loproteins", Proteins: Structure, Function and Genetics, in press.

The PCSHIFT module to be used needs a namelist file which includes information on the
magnetic suscepibility tensor and on the paramagnetic center, and a line of information for each
nucleus. This module allows to include more than one paramagnetic center in the calculations. To
include pseudocontact shifts as constraints in energy minimization and molecular dynamics cal-
culations the NMROPT flag should be set to 2, and aPCSHIFT=filenamestatement entered in
section THREE.

To perform molecular dynamics calculations it is necessary to eliminate the rotational and
traslational degree of freedom about the center of mass (this because during molecular dynamics
calculations the relative orientation between the external reference coordinate system and the
magnetic anisotropy tensor coordinate system has to be fixed).This option can be obtained with
the NSCM flag of SANDER.

Variables in thepcshift namelist.

NPROT number of pseudocontact shift constraints.

NME number of paramagnetic centers.

NMPMC name of the paramagnetic atom

OPTPHI(n)

OPTTET(n)

OPTOMG(n)

2/28/02

SANDER Input section SIX Page 121

OPTA1(n)

OPTA2(n) the five parameters of the magnetic anisotropy tensor for each paramagnetic
center.

OPTKON force constant for the pseudocontact shift constraints

Following this, there is a line for each nucleus for which the pseudocontact shift information
is given has to be added. Each line contains :

IPROT(i) atom number of the i-th proton whose shift is to be used as constraint.

OBS(i) observed pseudocontact shift value, in ppm

WT(i) relative weight

TOLPRO(i) relative tolerance ix mltpro

MLTPRO(i) multiplicity of the NMR signal (for example the protons of a methyl group
have mltprot(i)=3)

Example. Here is a &pcshf namelist example: a molecule with three paramagnetic centers and
205 pseudocontact shift constraints.

&pcshf

nprot=205,

nme=3,

nmpcm=’FE ’,

optphi(1)=-0.315416,

opttet(1)=0.407499,

optomg(1)=0.0251676,

opta1(1)=-71.233,

opta2(1)=1214.511,

optphi(2)=0.567127,

opttet(2)=-0.750526,

optomg(2)=0.355576,

opta1(2)=-60.390,

opta2(2)=377.459,

optphi(3)=0.451203,

opttet(3)=-0.0113097,

optomg(3)=0.334824,

opta1(3)=-8.657,

opta2(3)=704.786,

optkon=30,

iprot(1)=26, obs(1)=1.140, wt(1)=1.000, tolpro(1)=1.00, mltpro(1)=1,

iprot(2)=28, obs(2)=2.740, wt(2)=1.000, tolpro(2)=.500, mltpro(2)=1,

iprot(3)=30, obs(3)=1.170, wt(3)=1.000, tolpro(3)=.500, mltpro(3)=1,

iprot(4)=32, obs(4)=1.060, wt(4)=1.000, tolpro(4)=.500, mltpro(4)=3,

iprot(5)=33, obs(5)=1.060, wt(5)=1.000, tolpro(5)=.500, mltpro(5)=3,

iprot(6)=34, obs(6)=1.060, wt(6)=1.000, tolpro(6)=.500, mltpro(6)=3,

...

2/28/02

SANDER Input section SIX Page 122

...

iprot(205)=1215, obs(205)=.730, wt(205)=1.000, tolpro(205)=.500,

mltpro(205)=1,

&end

An mdin file that might go along with this, to perform a maximum of 5000 minimization cycles,
starting with 500 cycles of steepest descent. PCSHIFT=./pcs.in redirects the input from the
namelist "pcs.in" which contains the pseudocontact shift information.

Example of minimization including pseudocontact shift constraints

&cntrl

ibelly=0,imin=1,ntpr=100,

ntwx=100,ntwe=100,ioutfm=0,ntr=0,maxcyc=5000,

ncyc=500,ntmin=1,dx0=0.0001,dxm=1.0,dele=1.0e-07,

drms=.1,cut=10.,idiel=0, scee=2.0,

nmropt=2,pencut=0.1, ipnlty=2,

&end

&wt type=’REST’, istep1=0,istep2=1,value1=0.,

value2=1.0, &end

&wt type=’END’ &end

DISANG=./noe.in

PCSHIFT=./pcs.in

LISTOUT=POUT

5.12. SECTION SEVEN: Direct dipolar coupling restraints
Energy restraints based on direct dipolar coupling constants are entered in this section. All

variables are in the namelist&align ; reading of this section is triggered by the presence of a
DIPOLE line in Section THREE of the input.

When dipolar coupling restraints are turned on, the five unique elements of the alignment
tensor are treated as additional variables, and are optimized along with the structural parameters;
hence,iscaleshould be set to 5 in the&cntrl namelist. Their effective masses are determined
by thescalmparameter entered in Section ONE. Unlike some other programs, the variables used
are the Cartesian components of the alignment tensor in the axis system defined by the molecule
itself: e.g. Smn ≡ 105 < (3 cosθm cosθn − δmn)/2 >, whereθ x is the angle between thex axis and
the spectrometer field [60]. The factor of 105 is just to make the values commensurate with
atomic coordinates, since both the coordiantes and the alignment tensor values will be updated
during the refinement. The calculated dipolar splitting is then

Dcalc = −

10−5γiγ j h

2π2r 3
ij

 m,n=x,y,z

Σ cosφm ⋅ Smn ⋅ cosφn

whereφx is the angle between the internuclear vector and thex axis. Geometrically, the splitting

2/28/02

SANDER Input section SEVEN Page 123

is proportional to the transformation of the alignment tensor onto the internuclear axis. This is
just Eqs. (5) and (13) of the above reference, with any internal motion corrections (which might
be a part ofSsystem) set to unity. If there is an internal motion correction which is the same for all
observations, this can be assimilated into the alignment tensor. The current code does not allow
for variable corrections for internal motion, but this is coming.

At the end of the calculation, the alignment tensor is diagonalized to obtain information
about its principal components. This allows the alignment tensor to be written in terms of the
"axial" and "rhombic" components that are often used to describe alignment.

Variables in the&align namelist.

NDIP Number of observed dipolar coupling restraints to be used as restraints.

ID,JD Atom numbers of the two atoms involved in the dipolar coupling.

DOBS Value of the observed dipolar splitting, in Hz.

DATASET Each dipolar peak can be associated with a "dataset", and a separate alignment
tensor will be computed for each dataset. This is generally used if there are
several sets of experiments, each with a different sample or temperature, etc.,
that would imply a different value for the alignment tensor. By default, there
is one dataset to which each observed value is assigned.

NUM_DAT ASETS The number of datasets in the constraint list. Default is 1.

S11,S12,S13,S22,S23
Initial values for the cartesian components of the alignment tensor. The tensor
is traceless, so S33 is calculated as −(S11+S22). In order to have the order of
magnitude of the S values be rougly commensurate with coordinates in
Angstroms, the alignment tensor values must be multiplied by 105.

DWT The relative weight of each observed value. Default is 1.0. The penalty func-
tion is thus:

Ei
align = Di

wt(D
i
calc − Di

obs)
2

whereDwt may vary from one observed value to the next.

GIGJ Product of the nuclear "g" factors for this dipolar coupling restraint. These
are related to the nuclear gyromagnetic rations byγN = gN β N /h. Common
values are1H = 5.5856,13C = 1.4048,15N = -0.5663,31P = 2.2632.

DIJ The internuclear distance for observed dipolar coupling. If a non-zero value
is given, the distance is considered to be fixed at the given value. If adij value
is zero, its value is computed from the structure, and it is assumed to be a vari-
able distance. For one-bond couplings, it is usually best to treat the bond dis-
tance as "fixed" to an effective zero-point vibration value [61].

DCUT Controls printing of calculated and observed dipolar couplings. Only values
where abs(dobs - dexp) is greater than dcut will be printed. Default is 0.1 Hz.
Set to a negative value to print all dipolar restraint information.

FREEZEMOL If this is set to.true., the molecular coordinates are not allowed to vary during
dynamics or minimization: only the elements of the alignment tensor will
change. This is useful to fit just an alignment tensor to a given structure.
Default is.false..

2/28/02

SANDER NMR refinement Page 124

5.13. Overview of NMR refinement using SANDER.
We find thesandermodule to be a flexible way of incorporating a variety of restraints into a

optimization procedure that includes energy minimization and dynamical simulated annealing.
The "standard" sorts of NMR restraints, derived from NOE and J-coupling data, can be entered in
a way very similar to that of programs like DISGEO, DIANA or X-PLOR; an aliasing syntax
allows for definitions of pseudo-atoms, connections with peak numbers in spectra, and the use of
"ambiguous" constraints from incompletely-assigned spectra. More "advanced" features include
the use of time-averaged constraints, use of multiple copies (LES) in conjunction with NMR
refinement, and direct refinement against NOESY intensities, paramagnetic and diamagnetic
chemical shifts, or residual dipolar couplings. In addition, a key strength of the program is its
ability to carry out the refinements (usually near the final stages) using an explicit-solvent repre-
sentation that incorporates force fields and simulation protocols that are known to give pretty
accurate results in many cases for unconstrained simulations; this ability should improve predic-
tions in regions of low constraint density and should help reduce the number of places where the
force field and the NMR constraints are in "competition" with one another.

Since there is no generally-accepted "recipe" for obtaining solution structures from NMR
data, the comments below are intended to provide a guide to some commonly-used procedures.
Generally speaking, the programs that need to be run to obtain NMR structures can be divided
into three parts:

(1) front-endmodules, which interact with NMR databases that provide information about
assignments, chemical shifts, coupling constants, NOESY intensities, and so on. We hav e
tried to make the general format of the input straightforward enough so that it could be
interfaced to a variety of programs. At TSRI, we generally use the FELIX and NMRView
codes, but the principles should be similar for other ways of keeping track of a database
of NMR spectral information. As the flow-chart on the next page indicates, there are only
a few files that need to be created for NMR restraints; these are indicated by the solid
rectangles. The primary distance and torsion angle files have a fairly simple format that is
largely compatible with the DIANA programs; if one wishes to use information from
ambiguous or overlapped peaks, there is an addtional "MAP" file that makes a translation
from peak identifiers to ambiguous (or partial) assignments. Finally, there are some spe-
cialized (but still pretty straightforward) file formats for chemical shift or residual dipolar
coupling restraints.

There are a variety of tools, besides the ones described below, that can assist in preparing
input for structure refinement in Amber. The SANE (Structure Assisted NOE Evaluation)
package,

http://garbanzo.scripps.edu/nmrgrp/wisdom/sane/sane.html

is widely used at The Scripps Research Institute [62]. If you use Bruce Johnson’s
NmrView package, you might also want to look at the TSRI additions to that:

http://garbanzo.scripps.edu/nmrgrp/wisdom/pipe/tips_scripts.html

Users of the MARDIGRAS programs from UCSF can use themardi2amberprogram to
do conversion to Amber format:

http://picasso.ucsf.edu/mardihome.html

2/28/02

SANDER NMR refinement Page 125

(2) restrained molecular dynamics,which is at the heart of the conformational searching pro-
cedures. This is the part thatsanderitself handles.

(3) back-endroutines that do things like compare families of structures, generate statistics,
simulate spectra, and the like. For many purposes, such as visualization, or the running of
procheck-NMR, the "interface" to such programs is just the set of pdb-format files that
contain the family of structures to be analyzed. These general-purpose structure analysis
programs are available in many locations, are are not discussed here. The principal
sander-specific tool issviol, which prepares tables and statisitics of energies, restraint vio-
lations, and the like.

5.13.1. Preparing restraint files for Sander
Figure 1 shows the general information flow for auxiliary programs that help prepare the

restraint files. Once the restraint files are made, Figure 2 shows a flow-chart of the general way in
whichsanderrefinements are carried out:

The basic ideas of this scheme owe a lot to the general experience of the nmr community
over the past decade. Several papers outline procedures in the Scripps group, from which a lot of
the NMR parts of SANDER are derived [62-68]. They are by no means the only way to proceed.
We hope that the flexibility incorporated into SANDER will encourage folks to experiment with
refinement protocols.

5.13.2. Preparing distance restraints: makeDIST_RST.
The makeDIST_RSTprogram converts a simplified description of distance bounds into a

detailed input forsander. A variety of input and output filenames may be specified on the com-
mand line:

input:

-upb <filename> 7-col file of upper distance bounds, OR

-ual <filename> 8-col file of upper and lower bounds, OR

-vol <filename> 7-col file of NOESY volumes

-pdb <filename> Brookhaven format file

-map <filename> MAP file (default:map.DG-AMBER)

-les <filename> LES atom mappings, made by addles

output:

-dgm <filename> DGEOM95 restraint format

-rst <filename> SANDER restraint format

-svf <filename> Sander Volume Format

other options:

-help (gives you this explanation, overrides other parameters)

-report (gives you short runtime diagnostic output)

-nocorr (do not correct upper bound for r**-6 averaging)

-altdis (use alternative form for the distance restraints)

2/28/02

SANDER NMR refinement Page 126

NOESY

peak-list

various

calibrations

7/8 column

distance

bounds

makeDIST_RST distance

restraints

makeVOL_RST volume

restraints

chemical

shift

restraints

chemical

shifts

analyze

ambiguities

MAP

file

default

MAP file

SHIFTS or

FANTASIAN

spectr um

5 column

coupling

constants

makeANG_RST J-coupling

restraints

DISANG

file

default

chirality

infor m.

makeCHIR_RST chirality

restraints

direct

dipolar

couplings

makeDIP_RST alignment

restraints

Fig. 1.Notation:circlesrepresent logical information, whose format might differ from one project
to the next;solid rectanglesare in a specific format (largely compatible with DIANA and other
programs), and are intended to be read and edited by the user;ellipsesare specific to Sander, and
are generally not intended to be read or edited manually. The conversion of NOESY volumes to
distance bounds can be carried out by a variety of programs such asmardigrasor xpk2boundthat
are not included with Amber. Similarly, the analysis and partial assignment of ambiguous or
overlapped peaks is a separate task; at TSRI, these are typically carried out using the programs
xpkasgnandfilter.pl.

2/28/02

SANDER NMR refinement Page 127

gener ic
PDB-file

protonate Amber
PDB-file

LEaP
pr mtop &
pr mcrd

files

sander
control

file
SANDER

NMR
restraints

sander
output

sviolviolation
statistics

Amber
coordinates

ambpdb output
pdb-files

Fig. 2

The7/8 column distance boundfile is essentially that used by the DIANA or DISGEO pro-
grams. It consists of one-line per restraint, which would typically look like the following:

23 ALA HA 52 VAL H 3.8 # comments go here

The first three columns identify the first proton, the next three the second proton, and the seventh
column gives the upper bound. Only the first three letters of the residue name are used, so that
DIANA files that contain residues like "ASP−" will be correctly interpreted. An alternate, 8-col-
umn, format has both upper and lower bounds. Comments typically identify the spectrum and
peak-number or other identification that allow cross-referencing back to the appropriate spectrum.
If the comment contains the pattern "<integer>:<integer>", then the first integer is treated as a
peak-identifier, and the second as a spectrum-identifier. These identifiers go into theixpk and
nxpkvariables, and will later be printed out in sander, to facilitate going back to the original spec-
tra to track down violations, etc.

If all peaks involved just single protons, and were fully assigned, this is all that one would
need. In general, though, some peaks (especially methyl groups or fast-rotating aromatic rings)
represent contributions from more than one proton, and many other peaks may not be fully
assigned. Sander handles both of these situations in the same way, through the notion of an
"ambiguous" peak, that may correspond to several assignments. These peaks are given two types
of special names in the 7/8-column format file:

(1) Commonly-occuring ambiguities, like the lack of stereospecific assignments to two
methylene protons, are given names defined in the default MAP file. These names, also
more-or-less consistent with DIANA, are like the names of "pseudo-atoms" that have long

2/28/02

SANDER NMR refinement Page 128

been used to identify such partially assigned peaks,e.g. "QB" refers to the (HB2,HB3)
combination in most residues, and "MG1" in valine refers collective to the three methyl
protons at position CG1, etc.

(2) There are generally also molecule-specific ambiguities, arising from potential overlap in a
NOESY spectrum. Here, the users assigns a unique name to each such ambiguity or over-
lap, and prepares a list of the potential assignments. The names are arbitrary, but might
be constructed, for example, from the chemical shifts that identify the peak, e.g. "p_2.52"
might identify the set of protons that could contribute to a peak at 2.52 ppm. The chemi-
cal shift list can be used to prepare a list of potential assignments, and these lists can often
be pruned by comparison to approximate or initial structures.

The default and molecule-specific MAP files are combined into a single file, which is used, along
with the 7-column restraint file, the the programmakeDIST_RSTto construct the actual sander
input files. You should consult the help file for makeDIST_RST for more information. For
example, here are some lines added to the MAP file for a recent TSRI refinement:

AMBIG n2:68 = HE 86 HZ 86

AMBIG n2:72 = HE 24 HD 24 HZ 24

AMBIG n2:73 = HN 81 HZ 13 HE 13 HD 13 HZ 24

AMBIG n2:78 = HN 76 HZ 13 HE 13 HZ 24

AMBIG n2:83 = HN 96 HN 97 HD 97 HD 91

AMBIG n2:86 = HD1 66 HZ2 66

AMBIG n2:87 = HN 71 HH2 66 HZ3 66 HD1 66

Here the spectrum name and peak number were used to construct a label for each ambiguous
peak. Then, an entry in the restraint file might look like this:

123 GLY HN 0 AMB n2:68 5.5

indicating a 5.5 Å upper bound between the amide proton of Gly 123 and a second proton, which
might be either the HE or HZ protons of residue 86. (The "zero" residue number just serves as a
placeholder, so that there will be the same number of columns as for non-ambiguous restraints.)
If it is possible that the ambigous list might not be exhaustive (e.g. if some protons have not been
assigned), it is safest to setialtd=1, which will allow "mistakes" to be present in the constraint
list. On the other hand, if you want to be sure that every violation is "active", setialtd=0.

If the -lesflag is set, the program will prepare distance restraints for multiple copies (LES)
simulations. In this case, the input pdb file is onewithoutLES copies, i.e. with just a single copy
of the molecule. The "lesfile" specified by this flag is created by theaddlesprogram, and con-
tains a mapping from original atom numbers into the copy numbers used in the multiple-copies
simulation.

5.13.3. Preparing torsion angle restraints: makeANG_RST
There are fewer "standards" for representing coupling constant information. We hav e fol-

lowed the DIANA convention in the programmakeANG_RST. This program takes as input a five-
column torsion angle constraint file along with an AMBER pdb file of the molecule. It creates as
output (to standard out) a list of constraints in RST format that is readable by AMBER.

Usage: makeANG_RST -help

2/28/02

SANDER NMR refinement Page 129

makeANG_RST -pdb ambpdb_file [-con constraint] [-lib libfile]

[-les lesfile]

The input torsion angle constraint file can be read from standard in or from a file specified
by the -con option on the command line. The input constraint file should look something like
this:

1 GUA PPA 111.5 144.0

2 CYT EPSILN 20.9 100.0

2 CYT PPA 115.9 134.2

3 THY ALPHA 20.4 35.6

4 ADE GAMMA 54.7 78.8

5 GLY PHI 30.5 60.3

6 ALA CHI 20.0 50.0

....

Lines beginning with "#" are ignored. The first column is the residue number, the second is the
residue name (three letter code, or as defined in your own personal torsion library file). Only the
first three letters of the residue name are used, so that DIANA files that contain residues like
"ASP-" will be correctly interpreted. Third is the angle name (taken from the torsion library
described below).The fourth column contains the lower bound, and the fifth column the upper
bound. Additional material on the line is (presently) ignored.

Note: It is assumed that the lower bound and the upper bound define a region of allowed
conformation on the unit circle that is swept out in a clockwise direction fromlb → ub. If the
number in thelb column is greater than the the number in theub column, 360o will successively
be subtracted from thelb until lb < ub. This preserves the clockwise definition of the allowed
conformation space, while also making the number that specifies the lower bound less than the
number that specifies the upper bound, as is required by AMBER. If this occurs, a warning mes-
sage will be printed tostderrto notify the user that the data has been modified.

The angles that one can constrain in this manner are defined in the library file that can be
optionally specified on the command line with the -lib flag, or the default library "tordef.lib"
(written by Garry P. Gippert) will be used. If you wish to specify your own nomenclature, or add
angles that are not already defined in the default file, you should make a copy of this file and
modify it to suit your needs. The general format for an entry in the library is:

LEU PSI N CA C N+

where the first column is the residue name, the second column is the angle name that will appear
in the input file when specifying this angle, and the last four columns are the atom names that
define the torsion angle. When a torsion angle contains atom(s) from a preceding or succeeding
residue in the structure, a "-" or "+" is appended to those atom names in the library, thereby speci-
fying that this is the case. In the example above, the atoms that define PSI for LEU residues are
the N, CA, and C atoms of that same LEU and the N atom of the residue after that LEU in the pri-
mary structure. Note that the order of atoms in the definition is important and should reflect that
the torsion angle rotates about the two central atoms as well as the fact that the four atoms are
bonded in the order that is specified in the definition.

If the first letter of the second field is "J", this torsion is assumed to be a J-coupling con-
straint. In that case, three additional floats are read at the end of the line, giving the A,B and C

2/28/02

SANDER NMR refinement Page 130

coefficients for the Karplus relation for this torsion. For example:

ALA JHNA H N CA HA 9.5 -1.4 0.3

will set up a J-coupling restraint for the HN-HA 3-bond coupling, assuming a Karplus relation
with A,B, C as 9.5, -1.4 and 0.3. (These particular values are from Brüschweiler and Case, JACS
116: 11199 (1994).)

This program also supports pseudorotation phase angle constraints for prolines and nucleic
acid sugars; each of these will generate restraints for the 5 component angles which correspond to
the lb andub values of the input psuedorotation constraint. In the torsion library, a pseudorota-
tion definition looks like:

PSEUDO CYT PPA NU0 NU1 NU2 NU3 NU4

CYT NU0 C4’ O4’ C1’ C2’

CYT NU1 O4’ C1’ C2’ C3’

CYT NU2 C1’ C2’ C3’ C4’

CYT NU3 C2’ C3’ C4’ O4’

CYT NU4 C3’ C4’ O4’ C1’

The first line describes that a PSEUDOrotation angle is to be defined for CYT that is called PPA
and is made up of the four angles NU0-NU4. Then the definition for NU0-NU4 should also apper
in the file in the same format as the example given above for LEU PSI.

PPA stands for Pseudorotation Phase Angle and is the angle that should appear in the input
constraint file when using pseudorotation constraints. The program then uses the definition of
that PPA angle in the library file to look for the 5 other angles (NU0-NU4 in this case) which it
then generates restraints for. PPA for proline residues is included in the standard library as well
as for the DNA nucleotides.

If the -les flag is set, the program will prepare torsion angle restraints for multiple copies
(LES) simulations. In this case, the input pdb file is onewithoutLES copies, i.e. with just a sin-
gle copy of the molecule. The "lesfile" specified by this flag is created by theaddlesprogram,
and contains a mapping from original atom numbers into the copy numbers used in the multiple-
copies simulation.

Torsion angle constraints defined here cannot span two different copy sets, i.e., there cannot
be some atoms of a particular torsion that are in one multiple copy set, and other atoms from the
same torsion that are in other copy sets. Itis OK to have some atoms with single copies, and oth-
ers with multiple copies in the same torsion. The program will create as many duplicate torsions
as there are copies.

A good alternative to interpreting J-coupling constants in terms of torsion angle restraints is
to refine directly against the coupling constants themselves, using a appropriate Karplus relation.
See the discussion of the variableRJCOEF, above.

5.13.4. Chirality restraints: makeCHIR_RST

Usage: makeCHIR_RST <pdb-file> <output-constraint-file>

2/28/02

SANDER NMR refinement Page 131

We also find it useful to add chirality constraints andtrans-peptideω constraints (where
appropriate) to prevent chirality inversions or peptide bond flips during the high-temperature por-
tions of simulated annealing runs. The programmakeCHIR_RSTwill create these constraints.
Note that you may have to edit the output of this program to changetrans peptide constraints to
cis, as appropriate.

5.13.5. NOESY volume restraints: makeVOL_RST
Refinement directly against measured NOESY volume restraints is also possible insander.

The makeVOL_RST is used to prepare detailed input for this.

Usage: makeVOL_RST [-c cutoff] [-p <pdb-file>] [-v <volume-file>]

Defaults: cutoff is 5. Ang., <pdb-file> is INPDB, <volume-file> is PEAKS

The input files are as follows:

(1) the volume-file has one line per peak (free format); the first two columns of each line give
the Amber atom numbers for the protons involved in the peaks. (Usual convention: use
the last atom number for methyl or aromatic delta and epsilon protons.) The remaining
columns give the intensities at the various mixing times.
The *first line* of the volume-file should have the following (free format): nmix,
(emix(i),i=1,nmix), where nmix is the number of mixing times and emix gives the mixing
times (in seconds).
This file would generally be created by running makeDIST_RST using the "-svf" (sander
volume format) option. See the instructions for makeDIST_RST for more information.

(2) the pdb-file is a Brookhaven-format file (made by "ambpdb"), giving atom names and
coordinates. Atom numbers in this file must correspond to those used in the volume-file,
and in the Amber runs themselves.

On output,stdoutcontains a file that, with some minimal hand editing, should serve as input to
SANDER. More explicitly, it creates groups and &noeexp namelists that inlcude many of the
variables you will need. Any missing variables should be added by hand. [I do this since it
seems easier to hand-edit the output file than to arrange for a lot of pass-throughs from this pro-
gram into the output file.]

During refinement, measured NOESY volumes are included in penalty functions that
depend upon (I − I0) where I0 is the experimentally measured value, andI is the value corre-
sponding the current conformation; the functional form of the penalty depends upon theipnlty
variable. Careful experimentation will undoubtedly be required for each data set to define a rea-
sonable penalty function. Simply weighting each observed peak equally (with the default values
of awt andarange) is almost certainly a bad idea, since this effectively gives too much influence
to the strong peaks at the expense of longer-range information.

5.13.6. Direct dipolar coupling restraints: makeDIP_RST
For simulations with residual dipolar coupling restraints, themakeDIP_RST.protein,

makeDIP_RST.dnaandmakeDIP_RST.dianaare simple codes to prepare the input file. Use-help
to obtain a more detailed description of the usage. For now, this code only handles backbone NH
and CαH data. The header specifying values for various parameters needs to be manually added

2/28/02

SANDER NMR refinement Page 132

to the output ofmakeDIP_RST.

Use of residual dipolar coupling restraints is new both for AMBER and for the general
NMR community. Refinement against these data should be carried out with care, and the optimal
values for the force constant, penalty function, and initial guesses for the alignment tensor com-
ponents are still under investigation. Here are some suggestions from the experiences so far:

(1) Beware of overfitting the dipolar coupling data in the expense of AMBER force field
energy. These dipolar coupling data are very sensitive to tiny changes in the structure. It
is often possible to drastically improve the fitting by making small distortions in the back-
bone angles. We recommend inclusion of explicit angle restraints to enforce ideal back-
bone geometry, especially for those residues that have corresponding residual dipolar cou-
pling data.

(2) The initial values for the cartesian components of the alignment tensor can influence the
final structure and alignment if the structure is not fixed (ibelly = 0). For a fixed structure
(ibelly = 1), these values do not matter. Therefore, the current "best" strategy is to fit the
experimental data to the fixed starting structure, and use the alignment tensor[s] obtained
from this fitting as the initial guesses for further refinement.

(3) AMBER is capable of simultaneously fitting more than one set of alignment data. This
allows the use of individually obtained datasets with different alignment tensors. How-
ev er, if the different sets of data have equal directions of alignment but different magni-
tudes, using an overall scaling factor for these data with a single alignment tensor could
greatly reduce the number of fitting parameters.

(4) Because the dipolar coupling splittings depend on the square root of the order parameters
(0 ≤ S2 ≤1), these order parameters describing internal motion of individual residues are
often neglected (N. Tjandra and A. Bax,Science278, 1111-1113, 1997). However, the
square root of a small number can still be noticeably smaller than 1, so this may introduce
undesirable errors in the calculations.

5.13.7. Getting summaries of NMR violations
If you specifyLISTOUT=POUTwhen runningsander, the output file will contain a lot of

detailed information about the remaining restraint violations at the end of the run. When running
a family of structures, it can be useful to process these ouput files withsviol, which takes a list of
sanderoutput files on the command line, and sends a summary of energies and violations to STD-
OUT. If you have more than 20 or so structures to analyze, the output fromsviol becomes
unwieldy. In this case you may also wish to usesviol2, which prints out somewhat less detailed
information, but which can be used on larger families of structures. Thesenergyscript gives a
more detailed view of force-field energies from a series of structures. (We thank the TSRI NMR
community for helping to put these scripts together, and for providing many useful suggestions.)

5.13.8. Time-averaged restraints.
The model of the previous sections involves the "simgle-average-structure" idea, and tries to

fit all constraints to a single model, with minimal deviations. A generalization of this model
treats distance constraints arising from from NOE crosspeaks (for example) as being the average
distance determined from a trajectory, rather than as the single distance derived from an average
structure. Time-averaged bonds and angles are calculated as

2/28/02

SANDER NMR refinement Page 133

(1)r = (1/C)

t

0
∫ e(t ′−t)/τ r (t ′)−i dt′

−1/i

where

r = time-averaged value of the internal coordinate (distance or angle)

t = the current time

τ = the exponential decay constant

r (t ′) = the value of the internal coordinate at time t’

i = average is over internals to the inverse ofi. Usually i = 3 or 6 for NOE dis-
tances, and −1 (linear averaging) for angles and torsions.

C = a normalization integral.

Time-averaged torsions are calculated as

(2)< φ > = tan−1(< sin(φ) > / < cos(φ) >)

whereφ is the torsion, and < sin(φ) > and < cos(φ) > are calculated using the equation above with
sin(φ(t ′)) or cos(φ(t ′)) substituted for r(t’).

Forces for time-averaged restraints can be calculated either of two ways. This option is cho-
sen with the DISAVI / ANGAVI / TORAVI commands (Section 1). In the first (the default),

(3)∂E/∂x = (∂E/∂r) (∂r /∂r (t)) (∂r (t)/∂x)

(and analogously for y and z). The forces then correspond to the standard flat-bottomed well
functional form, with the instantaneous value of the internal replaced by the time-averaged value.
For example, whenr3 < r < r4,

(4)E = k3(r − r3)2

and similarly for other ranges ofr .

When the second option for calculating forces is chosen (IINC = 1 on a DISAVI, ANGAVI
or TORAVI card), forces are calculated as

(5)∂E/∂x = (∂E/∂r) (∂r (t)/∂x)

For example, whenr3 < r < r4,

(6)∂E/∂x = 2 k3 (r − r3) (∂r (t)/∂x)

Integration of this equation does not give Equation (4), but rather a non-intuitive expression for
the energy (although one that still forces the bond to the target range). The reason that it may
sometimes be preferable to use this second option is that the term∂r /∂r (t), which occurs in the
exact expression [Eq. (3)], varies as (r /r (t))1+i . When i=3, this means the forces can be varying
with the fourth power the distance, which can possibly lead to very large transient forces and
instabilities in the molecular dynamics trajectory. [Note that this will not be the case when linear
scaling is performed, i.e. wheni=−1, as is generally the case for valence and torsion angles. Thus,
for linear scaling, the default (exact) force calculation should be used].

It should be noted that forces calculated using Equation (5) are not conservative forces, and
would cause the system to gradually heat up, if no velocity rescaling were performed. The tem-
perature coupling algorithm should act to maintain the average temperature near the target value.
At any rate, this heating tendency should not be a problem in simulations, such as fitting NMR
data, where MD is being used to sample conformational space rather than to extract

2/28/02

SANDER NMR refinement Page 134

thermodynamic data.

This section has described the methods of time-averaged restraints. For more discussion, the
interested user is urged to consult studies where this method has been used [69,70]. torda huber
1993.lf 8875 _manual.me

5.13.9. Multiple copies refinement using LES
NMR restraints can be made compatible with the multiple copies (LES) facility; see the fol-

lowing chapter for more information about LES. To use NMR constraints with LES, you need to
do two things:

(1) Add a line like "file wnmr name=(lesnmr) wovr " to your input toaddles.The
filename (lesnmr in this example) may be whatever you wish. This will causeaddlesto
output an additional file that is needed at the next step.

(2) Add "-les lesnmr " to the command line arguments tomakeDIST_RST. This will
read in the file created byaddlescontaining information about the copies. All NMR
restraints will then be interpreted as "ambiguous" restraints, so that if any of the copies
satisifies the restraint, the penalty goes to zero.

Note that although this scheme has worked well on small peptide test cases, we have yet not used
it extensively for larger problems. This should be treated as an experimental option, and users
should use caution in applying or interpreting the results.

5.13.10. Some sample input files
The next few pages contain excerpts from some sample NMR refinement files used at TSRI.

The first example just sets up a simple (but often effective) simulated annealing run. You may
have to adjust the length, temperature maximum, etc. somewhat to fit your problem, but these val-
ues work well for many "ordinary" NMR problems.

2/28/02

SANDER NMR refinement Page 135

1. Simulated annealing NMR refinement

15ps simulated annealing protocol

&cntrl

nstlim=15000, ntt=1, (time limit, temp. control)
scee=1.2, (scee must be set - 1-4 scale factor)
ntpr=500, pencut=0.1, (control of printout)
ipnlty=1, nmropt=1, (NMR penalty function options)
vlimit=10, (prevent bad temp. jumps)
ntb=0, (non-periodic simulation)

&end

&ewald

eedmeth=5, (use r dielectric)
&end

#
Simple simulated annealing algorithm:
#
from steps 0 to 1000: raise target temperature 10->1200K
from steps 1000 to 3000: leave at 1200K
from steps 3000 to 15000: re-cool to low temperatures
#

&wt type=’TEMP0’, istep1=0,istep2=1000,value1=10.,

value2=1200., &end

&wt type=’TEMP0’, istep1=1001, istep2=3000, value1=1200.,

value2=1200.0, &end

&wt type=’TEMP0’, istep1=3001, istep2=15000, value1=0.,

value2=0.0, &end

#
Strength of temperature coupling:
steps 0 to 3000: tight coupling for heating and equilibration
steps 3000 to 11000: slow cooling phase
steps 11000 to 13000: somewhat faster cooling
steps 13000 to 15000: fast cooling, like a minimization
#

&wt type=’TAUTP’, istep1=0,istep2=3000,value1=0.2,

value2=0.2, &end

&wt type=’TAUTP’, istep1=3001,istep2=11000,value1=4.0,

value2=2.0, &end

&wt type=’TAUTP’, istep1=11001,istep2=13000,value1=1.0,

value2=1.0, &end

&wt type=’TAUTP’, istep1=13001,istep2=14000,value1=0.5,

value2=0.5, &end

&wt type=’TAUTP’, istep1=14001,istep2=15000,value1=0.05,

value2=0.05, &end

(continued on next page)

2/28/02

SANDER NMR refinement Page 136

1. Simulated annealing NMR refinement(continued)

#
"Ramp up" the restraints over the first 3000 steps:
#

&wt type=’REST’, istep1=0,istep2=3000,value1=0.1,

value2=1.0, &end

&wt type=’REST’, istep1=3001,istep2=15000,value1=1.0,

value2=1.0, &end

&wt type=’END’ &end

LISTOUT=POUT (get restraint violation list)
DISANG=RST.f (file containing NMR restraints)

The next example just shows some parts of the actualRSTfile that sander would read. This
file would ordinarilynot be made or edited by hand; rather, run the programsmakeDIST_RST,
makeANG_RSTandmakeCHIR_RST, combining the three outputs together to construct theRST
file.

2. Part of the RST.f file referred to above

first, some distance constraints prepared by makeDIST_RST:
(comment line is input to makeRST, &rst namelist is output)
#
#(proton 1 proton 2 upper bound)
#---
#
2 ILE HA 3 ALA HN 4.00

#

&rst iat= 23, 40, r3= 4.00, r4= 4.50,

r1 = 1.3, r2 = 1.8, rk2=0.0, rk3=32.0, ir6=1, &end

#

3 ALA HA 4 GLU HN 4.00

#

&rst iat= 42, 50, r3= 4.00, r4= 4.50, &end

#

3 ALA HN 3 ALA MB 5.50

#

&rst iat= 40, -1, r3= 6.22, r4= 6.72,

igr1= 0, 0, 0, 0, igr2= 44, 45, 46, 0, &end

#

.......etc......

2/28/02

SANDER NMR refinement Page 137

2. Part of the RST.f file referred to above(continued)

#
next, some dihedral angle constraints, from makeANG_RST:
#

&rst iat= 213, 215, 217, 233, r1=-190.0,

r2=-160.0, r3= -80.0, r4= -50.0, &end

&rst iat= 233, 235, 237, 249, r1=-190.0,

r2=-160.0, r3= -80.0, r4= -50.0, &end

.......etc.......
#
next, chirality and omega constraints prepared by makeCHIR_RST:
#
#

chirality for residue 1 atoms: CA CG HB2 HB3

&rst iat= 3 , 8 , 6 , 7 ,

r1=10., r2=60., r3=80., r4=130., rk2 = 10., rk3=10., &end

#

chirality for residue 1 atoms: CB SD HG2 HG3

&rst iat= 5 , 11 , 9 , 10 , &end

#

chirality for residue 1 atoms: N C HA CB

&rst iat= 1 , 18 , 4 , 5 , &end

#

chirality for residue 2 atoms: CA CG2 CG1 HB

&rst iat= 22 , 26 , 30 , 25 , &end#

#

......etc........

trans-omega constraint for residue 2
&rst iat= 22 , 20 , 18 , 3 ,

r1=155., r2=175., r3=185., r4=205., rk2 = 80., rk3=80., &end

#
trans-omega constraint for residue 3

&rst iat= 41 , 39 , 37 , 22 , &end

#
trans-omega constraint for residue 4

&rst iat= 51 , 49 , 47 , 41 , &end

#
......etc........
#

The next example is an input file for volume-based NOE refinement. As with the dis-
tance/angleRST file shown above, the user would generally not construct this file, but create it
from a "7-column" file using the makeVOL_RST program. Hand-editing might be used at the top
of the file, to change the correlation times, etc.

2/28/02

SANDER NMR refinement Page 138

3. Sample NOESY intensity input file

A part of a NOESY intensity file, made by makeVOL_RST :

&noeexp

id2o=1, (exchangeable protons removed)
oscale=6.21e-4, (scale between exp. and calc. intensity units)
taumet=0.04, (correlation time for methyl rotation, in ns.)
taurot=4.2, (protein tumbling time, in ns.)
NPEAK = 13*3, (three peaks, each with 13 mixing times)
EMIX = 2.0E-02, 3.0E-02, 4.0E-02, 5.0E-02, 6.0E-02,

8.0E-02, 0.1, 0.126, 0.175, 0.2, 0.25, 0.3, 0.35,

(mixing times, in sec.)
IHP(1,1) = 13*423, IHP(1,2) = 13*1029, IHP(1,3) = 13*421,

(number of the first proton)
JHP(1,1) = 78*568, JHP(1,2) = 65*1057, JHP(1,3) = 13*421,

(number of the second proton)
AEXP(1,1) = 5.7244, 7.6276, 7.7677, 9.3519,

10.733, 15.348, 18.601,

21.314, 26.999, 30.579,

33.57, 37.23, 40.011,

(intensities for the first cross-peak)
AEXP(1,2) = 8.067, 11.095, 13.127, 18.316,

22.19, 26.514, 30.748,

39.438, 44.065, 47.336,

54.467, 56.06, 60.113,

AEXP(1,3) = 7.708, 13.019, 15.943, 19.374,

25.322, 28.118, 35.118,

40.581, 49.054, 53.083,

56.297, 59.326, 62.174,

&end

SUBMOL1

RES 27 27 29 29 39 41 57 57 70 70 72 72 82 82 (residues in this submol)
END

END

Next, we illustrate the form of the file that holds residual dipolar coupling restraints. Again,
this would generally be created from a human-readable input using the programmakeDIP_RST.

2/28/02

SANDER NMR refinement Page 139

5. Residual dipolar restraints, prepared by makeDIP_RST:

&align

ndip=91, dcut=-1.0, fj=0.1, dfac_al=37*-0.46623, 54*-0.21341,

s11=3.883, s22=53.922, s12=33.855, s13=-4.508, s23=-0.559,

id(1)=188, jd(1)=189, dobs(1)= 6.24,

id(2)=208, jd(2)=209, dobs(2)= -10.39,

id(3)=243, jd(3)=244, dobs(3)= -8.12,

....

id(91)=1393, jd(91)=1394, dobs(91)= -19.64,

&end

Finally, we show how the detailed input tosandercould be used to generate a more compli-
cated restraint. Here is where the user would have to understand the details of theRSTfile, since
there are no "canned" programs to create this sort of restraint. This illustrates, though, the poten-
tial power of the program.

2/28/02

SANDER NMR refinement Page 140

5. A more complicated constraint

1) Define two centers of mass. COM1 is defined by
{C1 in residue 1; C1 in residue 2; N2 in residue 3; C1 in residue 4}.
COM2 is defined by {C4 in residue 1; O4 in residue 1; N* in residue 1}.
(These definitions are effected by the igr1/igr2 and grnam1/grnam2
variables; You can use up to 200 atoms to define a center-of-mass
group)
#
2) Set up a distance restraint between COM1 and COM2 which goes from a
target value of 5.0A to 2.5A, with a force constant of 1.0, over steps 1-5000.
#
3) Set up a distance restraint between COM1 and COM2 which remains fixed
at the value of 2.5A as the force slowly constant decreases from
1.0 to 0.01 over steps 5001-10000.
#
4) Sets up no distance restraint past step 10000, so that free (unrestrained)
dynamics takes place past this step.
#

&rst iat=-1,-1, nstep1=1,nstep2=5000,

iresid=1,irstyp=0,ifvari=1,ninc=0,imult=0,ir6=0,ifntyp=0,

r1=0.00000E+00,r2=5.0000,r3=5.0000,

r4=99.000,rk2=1.0000,rk3=1.0000,

r1a=0.00000E+00,r2a=2.5000,r3a=2.5000,

r4a=99.000,rk2a=1.0000,rk3a=1.0000,

igr1 = 2,3,4,5,0,

grnam1(1)=’C1’,grnam1(2)=’C1’,grnam1(3)=’N2’,grnam1(4)=’C1’,

igr2 = 1,1,1,0,

grnam2(1)=’C4’,grnam2(2)=’O4’,grnam2(3)=’N*’,

&end

&rst iat=-1,-1, nstep1=5001,nstep2=10000,

iresid=1,irstyp=0,ifvari=1,ninc=0,imult=0,ir6=0,ifntyp=0,

r1=0.00000E+00,r2=2.5000,r3=2.5000,

r4=99.000,rk2=1.0000,rk3=1.0000,

r1a=0.00000E+00,r2a=2.5000,r3a=2.5000,

r4a=99.000,rk2a=1.0000,rk3a=0.0100,

igr1 = 2,3,4,5,0,

grnam1(1)=’C1’,grnam1(2)=’C1’,grnam1(3)=’N2’,grnam1(4)=’C1’,

igr2 = 1,1,1,0,

grnam2(1)=’C4’,grnam2(2)=’O4’,grnam2(3)=’N*’,

&end

2/28/02

SANDER Getting debug information Page 141

5.14. Getting debugging information
The debug options in sander are there principally to help developers test new options or to

test results between two machines or versions of code, but can also be useful to users who want to
test the effect of parameters on the accuracy of their ewald or pme calculations. If the debug
options are set, sander will exit after performing the debug tasks set by the user.

To access the debug options, include a&debugf namelist. Input parameters are:

DO_DEBUGF Flag to perform this module. Possible values are zero or one. Default is zero.
Set to one to turn on debug options.

One set of options is to test that the atomic forces agree with numerical differentiation of energy.

AT OMN Array of atom numbers to test atomic forces on. Up to 25 atom numbers can
be specified, separated by commas.

NRANATM number of random atoms to test atomic forces on. Atom numbers are gener-
ated via a random number generator.

RANSEED seed of random number generator used in generating atom numbers default is
71277

NEGLGDEL negative log of delta used in numerical differentiating; e.g. 4 means delta is
10ˆ-4 Angstroms. Default is 5.Note: In general it does no good to set nelgdel
larger than about 6. This is because the relative force error is at best the
square root of the numerical error in the energy, which ranges from 10ˆ-15 up
to 10ˆ-12 for energies involving a large number of terms.

CHKVIR Flag to test the atomic and molecular virials numerically. Default is zero. Set
to one to test virials.

DUMPFRC Flag to dump energies, forces and virials, as well as components of forces
(bond, angle forces etc.) to the file "forcedump.dat" This produces an ascii
file. Default is zero. Set to one to dump forces.

RMSFRC Flag to compare energies forces and virials as well as components of forces
(bond, angle forces etc.) to those in the file "forcedump.dat". Default is zero.
Set to one to compare forces.

Several other options are also possible to modify the calculated forces.

ZEROCHG Flag to zero all charges before calculating forces. Default zero. Set to one to
remove charges.

ZEROVDW Flag to remove all van der Waals interactions before calculating forces.
Default zero. Set to one to remove van der Waals.

ZERODIP Flag to remove all atomic dipoles before calculating forces. Only relevant
when polarizability is invoked.

CONST,DO_CAP
DO_DIR,DO_REC,DO_ADJ,DO_SELF,DO_BOND,DO_CBOND,DO_ANGLE,DO_EPHI,DOX-

These are flags which turn on or off the subroutines they refer to. The
defaults are one. Set to zero to prevent a subroutine from running. For exam-
ple, set do_dir=0 to turn off the direct sum interactions (van der Waals as well
as electrostatic). Thes options, as well as the zerochg, zerovdw,zerodip flags,
can be used to fine tune a test of forces, accuracy etc.

2/28/02

SANDER Getting debug information Page 142

EXAMPLES:

This input list tests the reciprocal sum forces on atom 14 numerically, using a delta of 10ˆ-4.

&debugf

neglgdel=4, nranatm = 0, atomn = 14,

do_debugf = 1,do_dir = 0,do_adj = 0,do_rec = 1, do_self = 0,

do_bond = 1,do_angle = 0,do_ephi = 0, zerovdw = 0, zerochg = 0,

chkvir = 0,

dumpfrc = 0,

rmsfrc = 0,

&end

This input list causes a dump of force components to "forcedump.dat". The bond, angle and
dihedral forces are not calculated, and van der Waals interactions are removed, so the total force
is the Ewald electrostatic force, and the only non-zero force components calculated are electro-
static.

&debugf

neglgdel=4, nranatm = 0, atomn = 0,

do_debugf = 1,do_dir = 1,do_adj = 1,do_rec = 1, do_self = 1,

do_bond = 0,do_angle = 0,do_ephi = 0, zerovdw = 1, zerochg = 0,

chkvir = 0,

dumpfrc = 1,

rmsfrc = 0,

&end

In this case the same force components as above are calculated, and compared to those in
"forcedump.dat". Typically this is used to get an RMS force error for the Ewald method in use. To
do this, when doing the force dump use ewald or pme parameters to get high accuracy, and then
normal parameters for the force compare:

&debugf

neglgdel=4, nranatm = 0, atomn = 0,

do_debugf = 1,do_dir = 1,do_adj = 1,do_rec = 1, do_self = 1,

do_bond = 0,do_angle = 0,do_ephi = 0, zerovdw = 1, zerochg = 0,

chkvir = 0,

dumpfrc = 0,

rmsfrc = 1,

&end

For example, if you have a 40x40x40 unit cell and want to see the error for default pme
options (cubic spline, 40x40x40 grid), run 2 jobs------ (assume box params on last line of inpcrd
file)

Sample input for 1st job:

2/28/02

SANDER Getting debug information Page 143

&cntrl

dielc =1.0, scee = 1.2,

cut = 11.0, nsnb = 5, ibelly = 0,

ntx = 7, irest = 1,

ntf = 2, ntc = 2, tol = 0.0000005,

ntb = 1, ntp = 0, temp0 = 300.0, tautp = 1.0,

nstlim = 1, dt = 0.002, maxcyc = 5, imin = 0, ntmin = 2,

ntpr = 1, ntwx = 0, ntt = 0, ntr = 0,

jfastw = 0, nmrmax=0, ntave = 25,

&end

&debugf

do_debugf = 1,do_dir = 1,do_adj = 1,do_rec = 1, do_self = 1,

do_bond = 0,do_angle = 0,do_ephi = 0, zerovdw = 1, zerochg = 0,

chkvir = 0,

dumpfrc = 1,

rmsfrc = 0,

&end

&ewald

nfft1=60,nfft2=60,nfft3=60,order=6, ew_coeff=0.35,

&end

Sample input for 2nd job:

&cntrl

dielc =1.0, scee = 1.2,

cut = 8.0, nsnb = 5, ibelly = 0,

ntx = 7, irest = 1,

ntf = 2, ntc = 2, tol = 0.0000005,

ntb = 1, ntp = 0, temp0 = 300.0, tautp = 1.0,

nstlim = 1, dt = 0.002, maxcyc = 5, imin = 0, ntmin = 2,

ntpr = 1, ntwx = 0, ntt = 0, ntr = 0,

jfastw = 0, nmrmax=0, ntave = 25,

&end

&debugf

do_debugf = 1,do_dir = 1,do_adj = 1,do_rec = 1, do_self = 1,

do_bond = 0,do_angle = 0,do_ephi = 0, zerovdw = 1, zerochg = 0,

chkvir = 0,

dumpfrc = 0,

rmsfrc = 1,

&end

&ewald

ew_coeff=0.35,

&end

Note that an Ewald coefficient of 0.35 is close to the default error for an 8 Angstrom cutoff.
However, the first job used an 11 Angstrom cutoff. The direct sum forces calculated in the 2nd
job are compared to these, giving the RMS error due to an 8 Angstrom cutoff, with this value of
ew_coeff. The reciprocal sum error calculated in the 2nd job is with respect to the pme reciprocal

2/28/02

SANDER Getting debug information Page 144

forces in the 1st job considered as "exact".

Note further that if in these two jobs you had not specified "ew_coeff" sander would have
calculated ew_coeff according to the cutoff and the direct sum tolerance, defaulted to 10ˆ-5. This
would give 2 different ewald coefficients. Under these circumstances the direct, reciprocal and
adjust energies and forces would not agree well between the two jobs. However the total energy
and forces should agree reasonably, (forces to within about 5x10ˆ-4 relative RMS force error)
Since the totals are invariant to the coefficient.

Finally, note that if other force components are calculated, such as van der Waals, bond,
angle etc. The total force will include these, and the relative RMS force errors will be with respect
to this total force in the denominator.

2/28/02

LES Page 145

6. LES
The LES functionality for sander and gibbs was written by Carlos Simmerling, based on his

thesis work and the experiences of the Elber group. It basically functions by modifying theprm-
top file using the programaddles . The modifiedprmtopfile is then used with a slightly modi-
fied version of sander calledsander.LES .

Information on usingaddles for sander.LES is given here. The gibbs version is not yet
ready.

6.1. Background.
At room temperatures, normal nanosecond length molecular dynamics simulations have dif-

ficulty overcoming barriers to conformational transitions and may only sample conformations in
the neighborhood of the initial structure. Among the various techniques to enhance sampling dur-
ing a simulation, Locally Enhanced Sampling (hereafter called LES) stands out as a promising
strategy [73]. This mean-field technique allows the selective application of additional computa-
tional effort to a portion of the system, increasing the sampling of the region of interest. The
enhanced sampling is achieved by replacing the region(s) of interest with multiple copies. These
copies are constructed in a special way- they do not interact with each other, and interact with
other LES regions and the rest of the system in an average way. This average is an average force
or energy from all of the individual copy contributions, not one force or energy from an average
conformation of the copies. A key feature is that the energy function is modified such that the
energy is identical to that of the original system when all LES copies have the same coordinates.

During the simulation, the copies are free to move apart and explore different regions of
conformational space, thereby increasing the statistical sampling. The amount of copy indepen-
dence is an issue that will be discussed in further detail below. In practical terms, this means that
one can obtain multiple trajectories for the region of interest while carrying out only a single sim-
ulation. If the LES region is a small part of the system (such as a peptide in solution, or a loop in
a protein), then the additional computational effort from the added LES particles will be a small
percentage of the total number of atoms, and the multiple trajectories will be obtained with a
small additional computational effort. Perhaps the most useful feature of the LES method is that
it has been shown [74] that the barriers to conformational transitions in a LES system are reduced
as compared to the original system, resulting in more frequent conformational changes. This can
be rationalized with a simple model: imagine a protein side-chain that has been replaced with 2
copies. At finite temperatures, these copies will have different conformations. Now consider the
interaction of another part of the system with this region. Previously, steric conflicts or other unfa-
vorable interactions may have created high barriers. Now, howev er, the rest of the system sees
each of these 2 copies with a scaling factor of1⁄2. If one copy is in an unfavorable conformation,
the other may not be, and the effective barriers with a distribution of copies is less than with the
single copy. Another way to consider the LES copies is that they represent an intermediate state
between anormalsimulation where each point in time represents a single structure, and a purely
continuum model where the probability distribution of regions of interest are represented by a
continuous function. The atoms outside a LES region interact with that region as if it were (in the
limit of many copies) a continuum, with a probability scaling given to all interactions. Therefore,
the most unfavorable interactions are reduced in magnitude as compared to the original system.

Another key feature of the LES system is that the global energy minimum occurs when all
copies occupy the position of the global energy minimum in the original system [74]. This means
that optimization of the LES system directly provides information about the original system with-
out complicated mapping procedures. This can also be imagined with a simple model: imagine a

2/28/02

LES Page 146

system where one region is replaced with two copies. When the copies are together, the energy is
identical to the corresponding non-LES structure. Now move one copy, and the energy may go up
or down. The copies are independent and have no direct interaction (the energy function looks
like a sum of terms for each LES copy, with no terms involving both). Therefore, if the energy
after moving one copy went down, it will go down even more if the second copy is moved in the
same way. In other words, the energy sum related to one of the copies must always be less than or
equal to the other copies. Any configuration with copies separated must be higher in energy than a
single copy system corresponding to just one of the copies. This means that the global energy
minimum of the LES system must have all of the copies in the same location, and each of these
LES configurations has energy identical to the corresponding non-LES system, so the lowest of
these must be the original global energy minimum. This argument can be extended to any number
of copies and any number of LES regions.

Another way to envision the equivalence of global energy minima is through the following
experiment. Imagine we have a molecule in the global energy minimum conformation. We now
replace one region with multiple copies in the same conformation, which does not change the
energy. Now, we move one copy, leaving the rest of the system unchanged, and propose that the
energy might go down. We could then move the other copy to the same location and gain even
further reduction in energy. Next, we remove the extra copy (go to a non- LES system) leaving
the energy unchanged. We are therefore in a position other than the global energy minimum with
energy lower than the global minimum. This contradiction shows that our assumption that it was
possible to move a LES copy out of the non-LES global energy minimum conformation and
obtain a lower energy was incorrect. This equivalence of global energy minima not only makes
the mapping of results simple, but provides a critical self-consistency check for optimization
using LES. For example, LES can be combined with optimization techniques such as simulated
annealing (SA). At the end of a typical non-LES SA run, a single result is obtained. In order to
evaluate the convergence of the SA run, one must repeat the simulation with slower cooling, an
alternate initial structure, or another way to assess the result. With LES, however, one can simply
look at the final distribution of copies. If the copies are not in the same locations, then either
degenerate solutions exist (which can be tested by evaluating non-LES versions of each of the
copy conformations), or convergence was not achieved (since this type of configuration cannot be
the global minimum). Of course, convergence of copies does not guarantee that global minimum
was found, but this is still an extremely valuable property of optimization using LES. Other
methods exist that also provide a smoothing of the potential energy surface. However, the prop-
erty of direct mapping of global energy minimum is an attractive feature of LES. Another major
advantage of LES over alternate methods to reduce barriers or improve sampling is that it is com-
patible with current state-of-the-art simulation techniques such as molecular dynamics in explicit
aqueous solvation (problems for techniques such as Monte Carlo or Genetic Algorithms) and the
Particle Mesh Ewald technique for accurate treatment of long-range electrostatic interactions
[75-78]. Higher temperatures can increase rates of barrier crossing, but one is then faced with
issues related to solvent behavior at higher temperatures, maintaining proper densities and pres-
sures, stability of the molecule of interest at the elevated temperature, and so on. LES gives more
direct control over which regions should be enhanced, and also provides other benefits such as
improvement in statistical sampling discussed above.

6.2. Preparing to use LES with AMBER
The first decision that must be made is whether LES is an appropriate technique for the sys-

tem that you are studying. For further guidance, you may wish to consult published articles to see
where LES has proven useful in the past. Several examples will also be given at the end of this

2/28/02

LES Page 147

section in order to provide models that you may wish to follow.

There are three main issues to consider before running the ADDLES module of AMBER.

(1) What should be copied?

(2) How many copies should be used?

(3) How many regions should be defined?

A brief summary of my experience with LES follows.

(1) You should make copies of flexible regions of interest. This sounds obvious, and in some
cases it is. If you are interested in determining the conformation of a protein loop, copy the loop
region. If you need to determine the position of a side chain in a protein after a single point muta-
tion, copy that side chain. If the entire biomolecule needs refinement, then copy the entire
molecule. Some other cases may not be obvious- you may need to decide how far away from a
particular site structural changes may propagate, and how far to extend the LES region.

(2) You should use as few copies as are necessary. While this doesn’t sound useful, it illus-
trates the general point--too few copies and you won’t get the full advantages of LES, and too
many will not only increase your system size unnecessarily but will also flatten the energy surface
to the point where minima are no longer well defined and a wide variety of structures become
populated. In addition, remember that LES is an approximation, and more copies make it more
approximate. Luckily, published articles that explore the sensitivity of the results to the number of
copies show that 3-10 copies are usually reasonable and provide similar results, with 5 copies
being a good place to start.

(3) Placing the divisions between regions can be the most difficult choice when using LES.
This is essentially a compromise between surface smoothing and copy independence. The most
effective surface-smoothing in LES takes places between LES regions. This is because Na copies
in region A interact with all Nb copies in region B, resulting in Na*Nb interactions, with each
scaled by 1/(Na*Nb) compared to the original interaction. This is better both from the statistics of
how many different versions of this interaction contribute to the LES average, and how much the
barriers are reduced. Remember that since the copies of a given region do not interact with differ-
ent copies of that same region, interactions inside a region are only scaled by 1/N.

The other thing to consider is whether these enhanced statistics are actually helpful. For
example, if the copies cannot move apart, you will obtain many copies of the same conforma-
tion--obviously not very helpful. This will also result in less effective reduction in barriers, since
the average energy barriers will be very similar to the non-average barrier. The independence of
the copies is also related to how the copies are attached. For example, different copies of an
amino acid side chain are free to rotate independently (at least within restrictions imposed by the
surroundings and intrinsic potential) and therefore each side chain in the sequence could be
placed into a separate LES region. If you are interested in backbone motion, however, placing
each amino acid into a separate region is not the best choice. Each copy of a giv en amino acid
will be bonded to the neighbor residues on each side. This restriction means that the copies are
not very independent, since the endpoints for each copy need to be in nearly the same places. A
better choice is to use regions of 2-4 amino acids. As the regions get larger, each copy can start to
have more variety in conformation- for example, one segment may have some copies in a helical
conformation while others are more strand-like or turn-like. The general rule is that larger regions
are more independent, though you need to consider what types of motions you expect to see.

The best way to approach the division of the atoms that you wish to copy into regions is to
make sure that you have sev eral LES regions (unless you are copying a very small region such as
a short loop or a small ligand). This will ensure plenty of inter-copy averaging. Larger regions

2/28/02

LES Page 148

permit wider variations in structure, but result in less surface smoothing. A subtle point should be
addressed here- the statistical improvement available with LES is not a benefit in all cases and
care must be taken in the choice of regions. For example, consider a ligand exiting a protein cav-
ity in which a side chain acts as agateand needs to move before the ligand can escape. If we
make multiple copies of the gate, and do not copy the ligand, the ligand will interact in an average
way with thegates. If the gate was so large that even the softer copies can block the exit, then the
ligand would have to wait until ALL of the gate copies opened in order to exit. This may be more
statistically difficult than waiting for the original, single gate to open despite the reduced barriers.
Another way to envision this is to consider the ligand trying to escape against a true probability
distribution of the gate- if it was open 50% of the time and closed 50%, then the exit may still be
completely blocked. Continuum representations are therefore not always the best choice.

Specific examples will be given later to illustrate how these decisions can be made for a par-
ticular system.

6.3. Using the ADDLES program
The ADDLES module of AMBER is used to prepare input for simulations using LES. A

non-LES prmtop and prmcrd file are generated using a program such as LEaP. This prmtop file is
then given to ADDLES and replaced by a new prmtop file corresponding to the LES system. All
residues are left intact- copies of atoms are placed in the same residue as the original atom, so that
analysis based on sequence is preserved. Atom numbering is changed, but atom names are
unchanged, meaning that a given residue may have sev eral atoms with the same name. A different
program is available for taking this new topology file and splitting the copies apart into separate
residues, if desired. All copies are given the same coordinates as in the input coordinate file for
the non-LES system.

Using addles:

addles < inputfile > outputfile

SAMPLE INPUT FILE:

˜ a line beginning with ˜ is a comment line

˜ all commands are 4 letters

˜ use ’file’ to specify an input/output file

˜ then the type of file

˜ ’rprm’ means this is the file to read the prmtop

˜ the ’read’ means it is an input file

˜

file rprm name=(solv2OO.topo) read

˜

˜ ’rcrd’ reads the original coordinates- optional, only if you want

˜ a set of coords for the new topology

˜ you can also use ’rcvd’ for coords+velocities, ’rcvb’ for coords,

˜ velos and box dimensions

˜

file rcrd name=(501v200.coords) read

˜

˜ ’wprm’ is the new topology file to be written. the ’wovr’ means to

2/28/02

LES Page 149

˜ write over the file if it exists, ’writ’ means don’t write over.

˜

file wprm name=(lesparm) wovr

˜

˜’wcrd is for writing coords, it will automatically write velo and box

˜ if they were read in by ’rcvd’ or ’rcvb’

˜

file wcrd name=(lescrd) wovr

˜

˜ now put ’action’ before creating the subspaces

˜

action

˜

˜ the default behavior is to scale masses by 1/N.

˜ omas leaves all masses at the original values

˜

omas

˜

˜ now we specify LES subspaces using the ’spac’ keyword, followed

˜ by the number of copies to make and then a pick command to tell which

˜ atom to copy for this subspace

˜ 3 copies of the fragment consisting of monomers 1 and 2

˜

spac numc=3 pick #mon 1 2 done

˜

˜ 3 copies of the fragment consisting of monomers 3 and 4

˜

spac numc=3 pick #mon 3 4 done

˜

˜ 3 copies of the fragment consisting of residues 5 and 6

˜

spac numc=3 pick #mon 5 6 done

˜

˜ 2 copies of the side chain on residue 1

˜ note that this replaces each of the side chains ON EACH OF THE 3

˜ COPIES MADE ABOVE with 2 copies - net 6 copies

˜ each of the 3 copies of residue 1-2 has 2 side chain copies.

˜ the ’#sid’ command picks all atoms in the residue except

˜ C,O,CA,HA,N,H and HN.

˜

spac numc=2 pick #sid 1 1 done

spac numc=2 pick *sid 2 2 done

spac numc=2 pick #sid 3 3 done

spac numc=2 pick #sid 4 4 done

spac numc=2 pick #sid 5 5 done

˜

use the *EOD to end the input

*EOD

2/28/02

LES Page 150

What this does: all of the force constants are scaled in the new prmtop file by 1/N for N
copies, so that this scaling does not need to be done for each pair during the nonbond calculation.
Charges and VDW epsilon values are also scaled. New bond, angle, torsion and atom types are
created. Any of the original types that were not used are discarded. Since each LES copy should
not interact with other copies of the SAME subspace, the other copies are placed in the exclusion
list. If you define very large LES regions, the exclusion list will get large and you may have trou-
ble with the fixed length for this entry in the prmtop file- currently 8 digits.

The coordinates are simply copied - that means that all of the LES copies initially occupy
the same positions in space. In this setup, the potential energy should be identical to the original
system- this is a good test to make sure everything is functioning properly. Do a single energy
evaluation of the LES system and the original system, using the copied coordinate file. All terms
should be nearly identical (to within machine precision and roundoff). With PME on non- neutral
systems, all charges are slightly modified to neutralize the system. For LES, there are a different
number of atoms than in the original system, and therefore this charge modification to each atom
will differ from the non-LES system and electrostatic energies will not match perfectly.

IMPORTANT: After creating the LES system, the copies will all feel the same forces, and
since the coordinates are identical, they will move together unless the initial velocities are differ-
ent. If you are initializing velocities using INIT=3 and TEMPI>0, this is not a problem. In order
to circumvent this problem, addles slightly (and randomly) modifies the copy velocities if they
were read from the coordinate input file. If the keyword "nomodv" is specified, the program will
leave all of the velocities in the same values as the original file. If you do not read veocities, make
sure to assign an initial non-zero temperature to the system. You should think about this and
change the behavior to suit your needs. In addition, the program scales the velocities by sqrt(N)
for N copies to maintain the correct thermal energy (˜mv2), but only when the masses are scaled
(not using omas option). Again, this requires some thought and you may want different behavior.
Regardless of what options are used for the velocities, further equilibration should be carried out.
These options are simple attempts to keep the system close to the original state [79].

It is important to understand that each subsequent pick command acts on the ORIGINAL
particle numbers. Making a copy of a giv en atom number also makes copies of all copies of that
atom that were already created. This was the simplest way to be able to have a hierarchical LES
setup, but you can’t make extra copies of part of one of the copies already made. I’m not sure
why you would want to, or if it is even correct to do so, but you should be warned. Copies can be
anything -spanning residues, copies of fragments already copied, non-contiguous fragments, etc.
Pay attention to the order in which you make the copies, and look carefully at the output to make
sure you get what you had in mind. Addles will provide a list at the end of all atoms, the original
parent atom, and how many copies were made.

There are array size limits in the file SIZE.h, I apologize in advance for the poor documen-
tation on these. Mailcarlos.simmerling@stonybrook.eduif you have any questions or problems.

6.4. More information on the ADDLES commands and options

file: open a file, also use one of

rcrd: read coords from this file

rcvd: read coords + velo from file

rcvb: read coords, velo and box from file

wcrd: write coords (and more if rcvd, rcvb) to file

wprm: write new topology file

2/28/02

LES Page 151

action: start run, all of the following options must come AFTER action

nomodv: do NOT slightly randomize the velocities of the copies

spac: add a new subspace definition, using a pick command (see below).

follow with numc=# pickcmd where # is the number of copies to make

and pickcmd is a pick command that selects the group of atoms

to copy.

omas: leave all masses at original values (otherwise scale 1/N)

Syntax for ’pick’ commands

Currently, the syntax for picking atoms is somewhat limited. Simple Boolean logic is fol-
lowed, but operations are carried out in order and parentheses are not allowed.

#prt A B picks the atom range from A to B by atom number

#mon A B picks the residue range from A to B by residue number

#cca A B picks the residue range from A to B by residue number,

but dividing the residue between CA and C; the CO for A

is included, and the CO for monomer B is not. See

Simmerling and Elber, 1994 for an example of where this

can be useful.

chem prtc A picks all atoms named A, case sensitive

chem mono A picks all residues named A, case sensitive

Completion wildcards are acceptable for names: H* picks H, HA, etc. Note that H*2 will
select all atoms starting with H and ignore the 2.

Boolean logic:

| or atoms in either group are selected

& and atoms must be in both groups to be selected

!= not A != B will pick all atoms in A that are NOT in B

The user should carefully check the output file to ensure that the proper atoms were
selected.

Examples:

pick commandatoms selected

pick #mon 4 19 done all atoms in residues 4 through 19

pick #mon 1 50 & chem mono GLY done only GLY in residues 1 to 50

pick chem mono LYS | chem mono GLU done any GLU or LYS residue

pick #mon 1 5 != #prt 1 3 done residues 1 to 5 but not atoms 1 to 3

so, a full command to add a new subspace (LES region) with 4 copies of atoms 15 to 35 is:

2/28/02

LES Page 152

spac numc=4 pick #prt 15 35 done

6.5. Using the new topology/coordinate files with SANDER
These topology files are ready to use in Sander with one exception: all of the FF parameters

have been scaled by 1/N for N copies. This is done to provide the energy of the new system as an
av erage of the energies of the individual copies (note that it is an average energy or force, not the
energy or force from an average copy coordinate). However, one additional correction is required
for interactions between pairs of atoms in the same LES region. Sander will make these correc-
tions for you, and this information is just to explain what is being done. For example, consider a
system where you make 2 copies of a sidechain in a protein. Each charge is scaled by 1/2. For
these atoms interacting with the rest of the system, each interaction is scaled by 1/2 and there are
2 such interactions. For a pair of particles inside the sub-space, however, the interaction is scaled
by 1/2*1/2=1/4, and since the copies do not interact, there are only 2 such interactions and the
sum does not correspond to the correct average. Therefore, the interaction must be scaled up by a
factor of N. When the PME technique is requested, this simple scaling cannot be used since the
entire charge set is used in the construction of the PME grid and individual charges are not used
in the reciprocal space calculation. Therefore, the intra-copy energies and forces are corrected in a
separate step for PME calculations. Sander will print out the number of correction interactions
that need to be calculated, and very large amounts of these will make the calculation run more
slowly. PME also needs to do a separate correction calculation for excluded atom pairs (atoms
that should not have a nonbonded interaction, such as those that are connected by a bond). Large
LES regions result in large numbers of excluded atoms, and these will result in a larger computa-
tional penalty for LES compared to non-LES simulations. For both of these reasons, it is more
efficient computationally to use smaller LES regions- but see the discussion above for how region
size affects simulation efficiency. These changes are included in the LES version of Sander
(sander.LES). Each particle is assigned a LES ’type’ (each new set of copies is a new type), and
for each pair of types there is a scaling factor for the nonbond interactions between LES particles
of those types. Most of the scaling factors are 1.0, but some are not - such as the diagonal terms
which correspond to interactions inside a given subspace, and also off-diagonal terms where only
some of the copies are in common. An example of this type is the side chain example given
above- each of the 3 backbone copies has 2 sidechains, and while interactions inside the side
chains need a factor of 6, interactions between the side chain and backbone need a factor of 3.
This matrix of scaling factors is stored in the new topology file, along with the type for each
atom, and the number of types. The changes made in sander relate to reading and using these
scale factors.

6.6. Case studies: Examples of application of LES

6.6.1. Enhanced sampling for individual functional groups: Glucose.
The first example will deal with enhancing sampling for small parts of a molecule, such as

individual functional groups or protein side chains. In this case we wanted to carry out separate
simulations ofα andβ (not converting between anomers, only for conversions involving rotations
about bonds) glucose, but the 5 hydroxyl groups and the strong hydrogen bonds between neigh-
boring hydroxyls make conversion between different rotamers slow relative to affordable simula-
tion times. The eventual goal was to carry out free energy simulations converting between
anomers, but we need to ensure that each window during the Gibbs calculation would be able to

2/28/02

LES Page 153

sample all relevant orientations of hydroxyl groups in their proper Boltzmann-weighted popula-
tions. We were initially unsure how many different types of structures should be populated and
carried out non-LES simulations starting from different conformations. We found that transitions
between different conformations were separated by several hundred picoseconds, far too long to
expect converged populations during each window of the free energy calculation. We therefore
decided to enhance conformational sampling for each hydroxyl group by making 5 copies of each
hydroxyl hydrogen and also 5 copies of the entire hydroxymethyl group. Since the hydroxyl
rotamer for each copy should be relatively independent, we decided to place each group in a dif-
ferent LES region. This meant that each hydroxyl copy interacted with all copies of the neighbor-
ing groups, with a total of 5*5*5*5*5 or 3125 structural combinations contributing to the LES
av erage energy at each point in time. The input file is given below.

file rprm name=(parm.solv.top) read

file rcvb name=(glucose.solv.equ.crd) read

file wprm name=(les.prmtop) wovr

file wcrd name=(glucose.les.crd) wovr

action

˜

omas

˜

˜ 5 copies of each hydroxyl hydrogen- copying oxygen will make no difference

˜ since they will not be able to move significantly apart anyway

˜

spac numc=5 pick chem prtc HO1 done

spac numc=5 pick chem prtc HO2 done

spac numc=5 pick chem prtc HO3 done

spac numc=5 pick chem prtc HO4 done

˜

˜ take the entire hydroxy methyl group

˜

spac numc=5 pick #prt 20 24 done

*EOD

This worked quite well, with transitions now occurring every few ps and populations that
were essentially independent of initial conformation [76].

6.6.2. Enhanced sampling for a small region: Application of LES to a nucleic
acid loop

In this example, we consider a biomolecule (in this case a single RNA strand) for which part
of the structure is reliable and another part is potentially less accurate. This can be the case in a
number of different modeling situations, such as with homologous proteins or when the experi-
mental data is incomplete. In this case two different structures were available for the same RNA
sequence. While both structures were hairpins with a tetraloop, the loop conformations differed,
and one was more accurate. We tested whether MD would be able to show that one structure was
not stable and would convert to the other on an affordable timescale.

Standard MD simulations of several ns were not able to undergo any conversion between
these two structures (the initial structure was always retained). Since the stem portion of the RNA

2/28/02

LES Page 154

was considered to be accurate, LES was only applied to the tetraloop region. In this case, both of
the ends of the LES region would be attached to the same locations in space, and there was no
concern about copies diffusing too far apart to re-converge to the same positions after optimiza-
tion. The issues that need to be addressed once again are the number of copies to use, and how to
place the LES region(s). I usually start with the simplest choices and used 5 LES copies and only
a single LES region consisting of the entire loop. If each half of the loop was copied, then it
might become toocrowdedwith copies near the base-pair hydrogen bonds and conformational
changes that required moving a base through this regions could become even more difficult (see
the background section for details). Therefore, one region was chosen, and the RNA stem, counte-
rions and solvent were not copied. The ADDLES input file is given below.

˜

file rprm name=(prm.top) read

file rcvb name=(rna.crd) read

file wprm name=(les.parm) wovr

file wcrd name=(les.crd) wovr

action

˜

omas

˜

˜ copy the UUCG loop region- residues 5 to 8.

˜ pick by atom number, though #mon 5 8 would work the same way

˜

spac numc=5 pick #prt 131 255 done

*EOD

Subsequent LES simulations were able to reproducibly convert from what was known to be
the incorrect structure to the correct one, and stay in the correct structure in simulations that
started there. Different numbers of LES copies as well as slightly changing the size of the LES
region (from 4 residues to 6, extending 1 residue beyond the loop on either side) were not found
to affect the results. Fewer copies still converted between structures, but on a slower timescale,
consistent with the barrier heights being reduced roughly proportional to the number of copies
used. See Simmerling, Miller and Kollman, 1998, for further details.

6.6.3. Improving conformational sampling in a small peptide
In this example, we were interested not just in improving sampling of small functional

groups or even individual atoms, but in the entire structure of a peptide. The peptide sequence is
AVPA, with ACE and NME terminal groups. Copying just the side chains might be helpful, but
would not dramatically reduce the barriers to backbone conformational changes, especially in this
case with so little conformational variety inherent in the Ala and Pro residues. We therefore apply
LES to all atoms. If we copied the entire peptide in 1 LES regions, the copies could float apart.
While this would not be a disaster, it would make it difficult to bring all of the copies back
together if we were searching for the global energy minimum, as described above. We therefore
use more than one LES region, and need to decide where to place the boundaries between
regions. A useful rule of thumb is that regions should be at least two amino acids in size, so we
pick our two regions as Ace-Ala-Val and Pro-Ala- Nme. If we make five LES copies of each
region and each copy does not interact with other copies of the same regions, each half the

2/28/02

LES Page 155

peptide will be represented by five potentially different conformations at each point in time. In
addition, since each copy interacts with all copies of the rest of the system, there are 25 different
combinations of the two halves of the peptide that contribute at each point in time. This statistical
improvement alone is valuable, but the corresponding barriers are also reduced by approximately
the same factors. When we place the peptide in a solvent box the solvent interacts in an average
way with each of the copies. The input file is given below, and all of the related files can be found
in the test directory for LES.

˜

˜ all file names are specified at the beginning, before "action"

˜

˜ specify input prmtop

˜

file rprm name=(prmtop) read

˜

˜ specify input coordinates, velocities and box (this is a restart file)

˜

file rcvb name=(md.solv.crd) read

˜

˜ specify LES prmtop

˜

file wprm name=(LES.prmtop) wovr

˜

˜ specify LES coordinates (and velocities and box since they

˜ were input)

˜

file wcrd name=(LES.crd) wovr

˜

˜ now the action command reads the files and tells addles to

˜ process commands

˜

action

˜

˜ do not scale masses of copied particles

˜

omas

˜

˜ divide the peptide into 2 regions.

˜ use the CCA option to place the division between carbonyl and

˜ alpha carbon

˜ use the "or" to make sure all atoms in the terminal residues

˜ are included since the CCA option places the region division at C/CA

˜ and we want all of the terminal residue included on each end

˜

˜ make 5 copies of each half

˜

˜ "spac" defines a LES subspace (or region)

˜

2/28/02

LES Page 156

spac numc=5 pick #cca 1 3 | #mon 1 1 done

˜

spac numc=5 pick #cca 4 6 | #mon 6 6 done

˜

˜ the following line is required at the end

*EOD

This example brings up several important questions:

(1) should I make LES copies before or after adding solvent? Since LEaP is used to add sol-
vent, and LEaP will not be able to load and understand a LES structure, you must run
ADDLES after you have solvated the peptide in LEaP. ADDLES should be the last step
before running SANDER.

(2) which structure should be used as input to ADDLES? If you will also be carrying out
non-LES simulations, then you can equilibrate the non-LES simulation and carry out any
amount of production simulation desired before taking the structure and running
ADDLES. At the point you may switch to only LES simulations, or continue both LES
and non-LES from the same point (using different versions of SANDER). Typically I
equilibrate my system without LES to ensure that it has initial stability and that every-
thing looks OK, then switch to LES afterward. This way I separate any potential problems
from incorrect LES setup from those arising from problems with the non-LES setup, such
as in initial coordinates, LEaP setup, solvent box dimensions and equilibration protocols.

(3) how can I analyze the resulting LES simulation? This is probably the most difficult part
of using LES. With all of the extra atoms, most programs will have difficulty. For exam-
ple, a given amino acid with LES will have multiple phi and psi backbone dihedral
angles. There are basically two options: first, you can process your trajectory such that
you obtain a single structure (non-LES). This might be just extracting one of the copies,
or it might be one by taking the average of the LES copies. After that, you can proceed to
traditional analysis but must keep in mind that the average structure may be non-physical
and may not represent any actual structure being sampled by the copies, especially if they
move apart significantly. A better way is to use LES-friendly analysis tools, such as those
developed in the group of Carlos Simmerling. The visualization program MOIL-View
(http://morita.chem.sunysb.edu/˜carlos/moil-view.html) is one example of these programs,
and has many analysis tools that are fully LES compatible. Read the program web page or
manual for more details. A version of MOIL-View is included on the Amber 7 CD.

6.7. Unresolved issues with LES in AMBER
(1) Sander can’t currently maintain groups of particles at different temperatures (important

for dynamics, less so for optimization.) [80,81] Users can settemp0lesto maintain all
LES atoms at a temperature that is different from that for the system as a whole, but all
LES atoms are then coupled to the same bath.

(2) Initial velocity issues as mentioned above- works properly, user must be careful.

(3) Analysis programs may not be compatible. Seemorita.chem.sunysb.edu/˜carlos/moil-
view.html for an LES-friendly analysis and visualization program.

(4) Visualization can be difficult, especially with programs that use distance-based algorithms
to determine bonds. See #3 above.

2/28/02

LES Page 157

(5) Water should not be copied- the fast water routines have not been modified. For most
users this won’t matter.

(6) Copies should not span different ’molecules’ for pressure coupling and periodic imaging
issues. Copies of an entire ’molecule’ should result in the copies being placed in new, sep-
arate molecules- currently this is not done. This would include copying things such as
counterions and entire protein or nucleic acid chains.

(7) Copies are placed into the same residue as the original atoms- this can make some
residues much larger than others, and may result in less efficient parallelization with algo-
rithms that assign nonbond workload based on residue numbers.

(8) LES does not currently work with the generalized Born solvation model.

2/28/02

GIBBS Page 158

7. Gibbs

Usage: gibbs [gibfile] [-O] -i gibin -o gibout

-p prmtop -c inpcrd -r restrt

-ref refc -x mdcrd -v mdvel -e mden

-inf mdinfo -ms micstat

-cm constmat -cs cnstscrt -a patnrg

−O Overwrite output files.

7.1. Introduction
This is a guide togibbs, the AMBER module concerned with free energy calculations. This

module of the AMBER suite of programs calculates the free energy difference,∆G, between two
states "0" and "1":

(1)∆G = G1 − G0

In LEaP,State 1is the default state and State 0 is defined by setting the perturbed atom
parameters in the "Edit selected atoms" table in the xleap Unit Editor and using the saveAmber-
ParmPert command to make the topology and coordinate files. (Note that this convention is
"backwards" compared to that insander.)

The free energy difference is calculated in a series of incremental steps which connect phys-
ical states 1 and 0 through a series of not-necessarily-physical intermediates. The character of the
system at each of these intermediate steps is related to a parameterλ .

7.2. Free Energy Techniques Available in GIBBS
There are several techniques available in GIBBS/AMBER 4.0 for evaluating the free energy

difference between two states, all based on various statistical mechanical relationships. These
include:

(1) Free Energy Perturbation (FEP) Window Growth: The free energy is calculated at discrete
and uniformly spaced intervals ofλ using the formulae:

(2)Gλ (i+1) − Gλ (i) = − RT ln < exp−[(Vλ (i+1) − Vλ (i))/RT] >λ (i)

(3)∆G = G1 − G0 =
i
ΣGλ (i+1) − Gλ (i)

where G0 and G1 are the free energies of states 0 and 1, respectively,Vλ (i) is the potential

energy function representative of stateλ (i), and <>λ (i) means use the ensemble average of
the enclosed quantity, representative of stateλ (i). The ensemble is evaluated from an MD
trajectory run with V = Vλ (i) The user specifies the numbers of equilibration (NSTPE or
NSTMEQ) and data collection (NSTPA or NSTMUL) steps for eachλ (i)→λ (i + 1) "win-
dow".

(2) Slow growth − the same as window growth, except lambda changes by a small amount at
ev ery step. Lambda changes slowly enough that it is assumed the system remains in equi-
librium at every step (i.e. NSTPE=0, NSTPA=1). Thus the ensemble average in Equation
(2) is replaced by its instantaneous value at each step.

2/28/02

GIBBS Page 159

(3) Thermodynamic integration − instead of Equations (2) and (3), we use

(4)G1 − G0 =
1

0
∫ < ∂V/∂λ >λ dλ

to calculate the free energy difference. In practice, the integral is approximated by a sum-
mation over discrete intervals inλ .

(4) Dynamically Modified Windows − the equations of FEP (2 and 3) are used as described
for method 1 above. But instead of using pre-chosen uniformly-spaced intervals ofλ , the
width (δ λ = λ (i + 1) − λ (i)) of each window is determined during the run, based on the
recent value of the slope,∂G/∂λ , of the accumulated free energy versusλ curve. This
allows the simulation to be run more "slowly" when the free energy is changing very
quickly, and more "quickly" when it is not.

(5) Dynamically Modified Thermodynamic Integration − Uses the sameλ adjustment algo-
rithm as for FEP (method 4), but the intervals inλ correspond to the points at which the
integrand in Equation (4) is evaluated to approximate the integral.

(6) Potential of Mean Force (PMF) Calculations − the user can elect to constrain any chosen
set of internals (distances, angles, torsions) to a chosen lambda-dependent pathway. By
selecting the appropriate option (NCORC=1), the contribution to the free energy from
such constraints will be calculated. This constitutes a PMF calculation. PMF calculations
can be carried out as part of either a FEP Window Growth or Dynamically Modified Win-
dows run (1 and 3 above).

7.3. Understanding the Output

(a) Window growth, slow growth, dynamically modified windows: At specified intervals dur-
ing the simulation, the energies calculated up to that point will be reported in the format:

Current Lambda = 0.850000

Last F.E. update: Lambda = 0.800000 Step = 4000 Method = F.E.P.

Accumulated "forward" quantities (Nonbond change)

Lam+d_lam = 0.850000 F_energy = +0.64300

ELEC = 0.000 NONB = +0.643 14NB = 0.000

14EL = 0.000 BADH = 0.000

Accumulated "reverse" quantities (Nonbond change)

Lam-d_lam = 0.750000 F_energy = -0.62130

ELEC = 0.000 NONB = -0.621 14NB = 0.000

14EL = 0.000 BADH = 0.000

When the free energies reported were last updated, the values of lambda and step number
were as given on the second line. Note that thecurrent values ofλ and Step may be different, if
the free energies have not yet been updated to reflect the ensemble now being generated. Also
reported on the second line is the method being used to calculate free energy differences: F.E.P. is
Free Energy Perturbation (standard or Dynamically Modified Windows); T.I. is Thermodynamic
Integration (standard or Dynamically Modified Windows); Slow Growth is self explanatory.

2/28/02

GIBBS Page 160

Both "forward" and "reverse" accumulated free energies are reported. By default, GIBBS
carries out "double-wide sampling", which means that at every value ofλ we calculate the free
energies both for goingλ →λ + δ λ and for goingλ →λ − δ λ. The values "Lam+d_lam" and
"Lam-d_lam" which are reported were the values at the last free energy update. If there were no
sampling errors in our calculations, the independent sums of the "forward" and "reverse" values
over the entire simulation would be the same, except for sign. Their actual difference gives us a
lower boundon the error. By convention, the "forward" energy always corresponds to the energy
for the process represented byλ increasing 0→1. Similarly, the "reverse" energy corresponds to
the process represented byλ decreasing 1→0. This is true regardless of the direction in which the
actual simulation was run..

Along with the total accumulated free energies in the "forward" and "reverse" directions, a
component breakdown of the energies is given. Components listed include: ELEC (electrostatics,
except 1-4’s); NONB (non-bonds, except 1-4’s); 14NB (1-4 nonbonds); 14EL (1-4 electrostatics)
and BADH (bonds, valence angles and torsion angles).Note that for Windows and Dynamically
Modified Windows, these components are only estimates. For slow growth and thermodynamic
integration, they are exact.

If PMF calculations are performed, a sixth component will be listed, CORC. The procedure
used to perform a PMF makes it difficult to separate contributions due to the constraints them-
selves from those due to non-bonded/electrostatic interactions. For this reason, in these cases
CORC will reflect the sum total of all three types of contributions and the individual non-
bonded/electrostatic contributions will be reported as 0’s.

(b) Thermodynamic integration: The output is similar to that described above, except that,
because of the integral which must be evaluated in thermodynamic integration (TI) (Equation 4),
double-wide sampling is not possible. Thus, only a "forward" set of energies is reported. Again,
by convention, these value have the sign appropriate for the 0→1 conversion, regardless of the
direction in which the simulation was actually run.

If the calculation of individual entropy/enthalpy contributions is requested, these will also
be included in the output, following the same forward/reverse conventions as above.

7.4. Defining States and Obtaining Appropriate Starting Coordinates
The default state from which to start the perturbation is usuallyλ =1. However, you can

equilibrate at eitherλ =1 orλ =0 (or any arbitrary value ofλ) as follows:

Set ISLDYN (line 14) to +-2 or +-3;
Set NRUN (line 5) to 1;
Set NSTLIM (line 8) to the number of steps of equilibration desired;
Set ALMDA (line 14) to the value ofλ at which equilibration is to take place;
And set NSTMEQ (line 14) to any value greater than NSTLIM.

The program is capable of handling periodic boundary conditions with the solute in a sol-
vent bath either with constant volume or constant pressure. Additionally, it is possible to decou-
ple the free energy into electrostatic and van der Waals contributions, if desired.

7.5. Suggested introductory references
The papers listed here emphasize the theory and experience with the AMBER programs;

general reviews are available that cover many other apsects of the field [54,82-84]. The basic

2/28/02

GIBBS Page 161

operation and capabilities ofgibbsare described in a series of papers by Dave Pearlman, Peter
Kollman, and their co-workers [1,85-87]. Because it has so many options, thegibbsprogram has
been used a lot for comparative studies of free energy methods [88-91]. Some recommendations
for free energy calculations, with specific reference to the options ingibbs, are given at the end of
this chapter. Thermodynamic integration calculations can also be carried out withsander(see
that chapter).

7.6. Assigning files
GIBBS incorporates a file assignment protocol which is easy to use, and which will work on

all computers. In addition, file assignments can optionally be specified using flags on the com-
mand line.

gibbs [gibfile] [-O] [-i PIN] [-p PPARM] [-c PINCRD]

[-o POUT] [-r PREST] [-inf PINFO] [-ms MICSTAT]

[-cm CONSTMAT] [-cs CNSTSCRT] [-a PATNRG]

[-x PCOORD] [-v PVEL] [-e PEN] [-ref PREFC]

where PIN, PPARM, etc. are replaced by the appropriate filenames to be assigned. The meanings
of the various files are given below.

If "gibfile" is present, it must be the first option given, and this file will be read to make the
file assignments. In this case, any remaining flags are ignored. Otherwise, all assignments are
made using command-line flags. Any flags not specified default to the given name (e.g. if -o is not
specified, output would be in file POUT).

GIBBS I/O FILE ASSIGNMENTS

file unit purpose

INPUT:

PIN 5 Control data for the run (described below).

PPARM 8 Topology file (created by LEaP)

PINCRD 9 Initial positions and (optionally) velocities.

PREFC 10 Reference coordinates for optional position

restraints (only if NTR = 1)

OUTPUT:

POUT 6 Formatted results and diagnostics

PREST 16 Restart coordinates and velocities.

For restarts, this file should be assigned to PINCRD.

2/28/02

GIBBS Page 162

PINFO 7 Short file containing a summary of current energies.

For monitoring runs which are executing.

MICSTAT 27 A concise summary of important energy information

for each window/interval.

CONSTMAT 28 Contains data related to the matrix of free

energy data generated. Only used when IPER>0 for

one or more of the constraints/restraints defined

with INTR > 0 (see line 13).

CNSTSCRT 42 Contains data required when generating

a matrix of free energies corresponding to two

independent sets of constraints (IPER>0 and INTR>0;

see line 13).

PCOORD 12 Archived coordinate sets (if NTWX > 0)

PVEL 13 Archived velocity sets (if NTWV > 0)

PEN 15 Archived energy related data (if NTWE > 0)

7.7. Control parameters
The title (line 1) must be the first line in PIN. All remaining standard flags are entered in the

namelist&cntrl.

TIMLIM Time limit for the job (in seconds). Default = 999999.

IREST Flag to restart the run.

= 0 Normal start (default)

= 1 Job to be restarted. The accumulated free energies, current value of
lambda, and other required quantities are read from the end of the
input coordinate file (PINCRD). This file should be the PREST file
written by the simulation being restarted.

IBELLY Flag for belly type dynamics.

= 0 No belly run (allow all atoms to move; default).

= 1 Belly run. The subgroups of atoms which are allowed to move are
read as groups from file PIN. See the section on GROUP in the
Appendices.

2/28/02

GIBBS Page 163

ICHDNA Option to modify the charge of end hydrogens during in vacuo simulations.
Without this option, molecular dynamics calculations on nucleotides will
result in bonding between the 5’ and 3’ hydrogens and the corresponding
phosphate groups.

= 0 no charge modification (default)

= 1 modify charge

IPOL for inclusion of polarizabilities in the force field.

= 0 non polar calc (no polarizabilities read from "prmtop"; default).

= 1 turn on polarization calculation.

I3BOD For 3-body terms with a polarization calc.

= 0 No 3-body terms to be defined. Default.

= 1 Read and use 3-body interaction definitions (see card 18). 3-Body
terms only have an effect when polarization is turned on (IPOL=1).

NTX Option to read the initial coordinates and velocities.

Options 1-3 are used when no set of starting velocities is available
(e.g. when starting from a set of minimized coordinates). Options
4-5 are used when: 1) a starting set of velocities is available (e.g.
after MD equilibration or on an MD RESTART); and 2) The coordi-
nates/velocities were generated with MD run either without periodic
boundary conditions, or with constant VOLUME periodic boundary
conditions. (Box dimensions, if any, are taken from the PARM file).
Options 6,7 are used when both a starting set of velocities are avail-
able and the coordinates/velocities were generated with MD run
using constant PRESSURE periodic boundary conditions. Note: box
dimensions only appear in coordinate files written (as PREST) after
simulations using periodic boundary conditions (constant volume or
constant pressure).

= 1 X is read; no velocity information read (Amber format); default

= 2 X is read; no velocity information read (unformatted)

= 4 X and V are read (unformatted)

= 5 X and V are read (Amber format)

= 6 X, V and BOX are read (unformatted)

= 7 X, V and BOX are read (formatted)

NTXO Option to write the final coordinates and velocities.

2/28/02

GIBBS Page 164

= 0 X, V and BOX are written to file ’PREST’ (unformatted)

= 1 X, V and BOX are written to file ’PREST’ (Amber format); default.

IG The seed for the random number generator. The MD starting velocity is
dependent on the random number generator seed. The generator works most
effectively when the seed is large and an odd or a prime number (e.g. 71277,
the default).

TEMPI Initial temperature, default is 0.0. If TEMPI > 1.0e-06, the velocities are
taken from a maxwellian distribution with TEMPI (K). Choosing a low initial
temperature (e.g. 10K) allows the calculation to reach the equilibrium condi-
tions with the residual forces in the system during the initial steps. TEMPI is
ignored if NTX > 3.

HEAT If ABS(HEAT) .GE. 1.0E-06, all the velocities are multiplied by HEAT.
Default is 0.0.

NTB Flag for periodic boundary conditions. If NTB .EQ. 0 then the boundary con-
ditions are NOT applied. The periodic box may be rectangular or monoclinic
depending on the value of BETA.

= 0 no periodicity is applied; default.

= 1 constant volume

= 2 constant pressure.

IFTRES Flag to remove the nonbonded cutoff from the solute.

= 0 ALL solute - solute nonbonded interactions are calculated, and the
boundary conditions are not applied to the solute. For simulations of
highly charged solutes in a water bath, it can be useful to calculate
ALL solute - solute nonbonded interactions in order to reduce elec-
trostatic problems. Note that this option is intended for small
solutes, and will generate many more nonbonded pairs than the nor-
mal method if the solute is large. This option is useful for DNA and
counterions. Note: if counterions are added in edit, then they are
considered part of the solute.

= 1 Nonbondeds are evaluated normally; default.

Note: IFTRES will only have an effect when periodic boundary con-
ditions are employed (NTB > 0). When NTB=0, IFTRES=1 behav-
ior (normal nonbond generation) always occurs.

BOXX(1..3) Lengths of the edges of the periodic box. If IBXRD > 0, then the values spec-
ified here will be used. Otherwise, the values specified here are ignored and
the values in the PARM output file (if NTX < 7) or the values in PINCRD (if
NTX >= 7) will be used.

BETA Angle between the x- and z- axes of the box in degrees. The y- axis is
assumed to be orthogonal to the other axes. (0 < BETA < 180). The informa-
tion given for BOX(1..3) above applies to BETA as well. Non-orthogonal
systems do not currently work correctly. Therefore, if IBXRD > 1, BETA
must be set to 90.0, which is the default.

IBXRD If IBXRD > 0, then the values of BOX(1..3) and BETA specified here will be
used. Otherwise, the values in the PPARM or PINCRD file will be used (see

2/28/02

GIBBS Page 165

above).

NRUN Number of MD-runs of NSTLIM steps to be performed; default is 1. Since
the restart coordinates are written only at the end of each run, it is sometimes
desirable to break a long run into a series of shorter steps. If NRUN is set >
1, one should ensure that the number of equilibration+data_collection steps (if
performing windows/TI) divides evenly into NSTLIM (line 8). The number
of picoseconds of molecular dynamics is equal to the product of NRUN X
NSTLIM X DT.

NTT Switch for temperature scaling. Note that several of he temperature coupling
options available here are new to version 4 of GIBBS. Several of these are
rather ad-hoc, and may not result in a thermodynamically relevant ensemble.
(They may be useful when using MD strictly to sample conformational
space). For free energy calculations, it is recommended you stick with NTT =
0 (constant energy), NTT = 1 (constant temperature) or NTT = 5 (constant
temperature, separate solute/solvent temperature scaling).

< 0 Re-assign random velocities whenever the current temperature devi-
ates by more than DTEMP from DTEMP0 (target temperature), and
ev ery ABS(NTT) steps. Velocities are assigned in a Maxwellian dis-
tribution. By default, velocities are are reset for all atoms. If NSEL >
0 (see below), NSEL atoms are selected at random each time a veloc-
ity reassignment is to take place, and only those atoms have their
velocities reassigned. (Be sure to set DTEMP0 to a very large value
if you wish to disable its action with this option).

Note that the procedure which assigns velocities makes the assign-
ments as if all particles possessed three independent degrees of trans-
lational freedom. If SHAKE is used, this will not strictly be the case,
and the effective temperature immediately after velocity assignment
will be higher than the target temperature. As velocity contributions
along the constrained directions are dissipated, the temperature will
rapidly adjust towards the target.

= 0 Classical dynamics. Never rescale/reassign velocities after the start.
[The total energy (kinetic + potential) is conserved; same as in older
versions of GIBBS.]

= 1 Constant temperature, using the Berendsen coupling algorithm. A
single scaling factor for velocities is used (same as in older versions
of GIBBS). This is the default.

= 2 Constant temperature, using the Berendsen coupling algorithm. But
only consider the solute temperature in determining the velocity scal-
ing on each step. Could result in solvent atoms having very high
temperature, and not generally recommended.

= 3 Constant temperature, using Berendsen algorithm. But only rescale
when temperature deviates from TEMP0 by more than TEMP0. Sin-
gle scaling factor.

= 4 When temperature deviates from TEMP0 by more than DTEMP, do
one quick scale of the velocities to bring them back to TEMP0. Oth-
erwise, do not scale.

2/28/02

GIBBS Page 166

= 5 Constant temperature, using the Berendsen coupling algorithm, and
with separate solute/solvent velocity scaling factors. This option is
recommended as a replacement for NTT=1, and can help alleviate
the "cold solute/hot solvent" problem.

TEMP0 Reference temperature at which the system is to be kept if NTT not = 0.
Default is 298.

DTEMP The deviation allowed in the constant temperature MD-runs (read but ignored
if NTT=0,1,2 or 5). Default is 10.

TA UTP Temperature relaxation time when NTT .gt. 0. This is a damping factor which
prevents abrupt changes in the system, if the temperature exceed specified
deviations. Generally, values for TAUTP should be in the range of 0.1-0.4.
Smaller values of TAUTP result in "tighter" coupling. Default is 0.1.

TA UTS If NTT=5, then TAUTP is the temperature relaxation time for the solute, while
TA UTS is the relaxation time for the solvent. If is specified as 0.0, TAUTS is
set equal to TAUTP. Generally, TAUTS should be in the range of 0.1-0.4, with
smaller values resulting in "tighter" coupling. If NTT.NE.5, TAUTS is read
but ignored. Default is 0.1.

ISOLVP Only used if NTT = 2 or 5 (sep. solute/solvent temp coupling)

= 0 default solvent atom pointer is used. If periodic boundary conditions
are being used, this is the last solute atom. Otherwise, it will be the
last atom of the system (which results in no separate solute/solvent
coupling). Note that counterions are by default considered part of
the _solute_.

> 0 Giv es the number of the last atom to be considered part of the
"solute". ISOLVP should generally be specified if NTT = 5 and NTB
= 0. ISOLVP only affects temperature scaling.

NSEL Only used if NTT < 0 (random velocity reassignments)

= 0 When velocity reassignment takes place, velocities for all atoms are
reassigned (default).

> 0 When velocity reassignment takes place, NSEL atoms are randomly
selected, and only the velocities for those atoms are reassigned.

DTUSE The value of d_TEMP used in approximating the temperature derivatives by
finite differences. DTUSE is only used when individual enthalpy/entropy val-
ues are being calculated (ISANDE = 1, line 12). DTUSE should generally be
<= 1.0 (larger values often cause floating overflows/ underflows). Default is
1.0.

NTP Flag for constant pressure dynamics. This option MUST be set to 1 or 2 when
the MD calculation is done with constant pressure periodic boundary condi-
tions (NTB=2, line 4).

= 0 Classical dynamics without any Pressure Monitoring (default)

= 1 MD with isotropic position scaling

= 2 MD with anisotropic diagonal (x-,y-,z-) position scaling

NPSCAL Flag for the type of scaling in case of constant pressure run.

2/28/02

GIBBS Page 167

= 0 Uniform coordinate Scaling (default)

= 1 Sub molecules Center of mass Scaling

PRES0 Reference pressure at which the system is maintained (when NTP > 0) in
units of bars, where 1 bar ˜ 1 atm. Default = 1.0.

COMP Inverse compressibility of the system when NTP > 0. The unit is in
1.0E-06/bar (the default value of 44.6 is recommended).

TA UP Pressure relaxation time when NTP .gt. 0 The recommended value is between
0.1 and 1.0 ps-1. Default is 0.4.

NDFMIN Number of degrees of freedom that will be subtracted from the total number
of degrees of freedom to account for center of mass removal, belly runs, etc.
(This will be a value between 0 and 6). By default (if NDFMIN.GE.0), this
value will be set automatically. For nearly all simulations, you should accept
the default calculated when NDFMIN = 0. If you set NDFMIN<0, then
ABS(NDFMIN) additional degrees of freedom will be subtracted *in addition
to* the number calculated automatically. This option is provided so that you
can account for systems containing extended linear moities that reduce the
true number of degrees of freedom from that which would be calculated by a
simple 3N-6 determination. For example, if you used a linear triatomic
molecule for your solvent, you would need to set NDFMIN = -(number of sol-
vent molecules).

NTCM Flag for the removal of translational and rotational motion from the initial
velocities. NOTE: this flag is automatically set to 0 if belly option is used.

= 0 The translational and rotational motion about the center of mass is
not removed (default)

= 1 The above motion is removed and NTCM is reset to 0. If velocities
are being periodically reassigned according to a Boltzmann distribu-
tion (NTT < 0) and NTCM = 1, then center of mass motion will be
removed after each reassignment.

NSCM After NSCM steps the above motion will be removed again if NTB .EQ. 0.
This flag should be set to -1 if the belly option is used. This results in NSCM
.EQ. 90 000 000 steps. Default is -1.

ISVAT Residue-based periodic imaging flag ISVAT is ignored when periodic bound-
ary conditions are not used.

= 1 Residue-based periodic boundary conditions are used (default). For
each residue, imaging is determined based on the position of the
atom in the residue which is closest to the residue’s initial center of
mass. Both solute and solvent atoms are imaged on a residue basis.
Each atom of any solute or solvent residue "sees" the same image of
any interacting residue.

= 2 Same as 1, except that for each atom of the _solute_, different whole-
residue images on interacting residues may be used. Can be useful
when a solute residue is fairly long in one or more dimensions. The
code required to implement ISVAT=2 does not vectorize, and may
result in a substantial hit to performance on vector machines. For this
reason, ISVAT=1 should be used except where ISVAT=2 is clearly

2/28/02

GIBBS Page 168

required.

= 3 No residue-based periodic imaging. Separate imaging is done for
each atom-atom pair. This is the way imaging was done in versions≤
3 of GIBBS (and MD). In typical operation, you would NOT want to
use this option. Setting ISVAT<3 allows a cutoff of as large as∼ 1/2
the smallest box dimension to be used. When ISVAT=3 with periodic
boundary conditions, a much smaller cutoff/box ratio must be used.

NSTLIM

> 0 Number of MD-steps per run to be performed. NRUN such runs will
be carried out.

= -1 Continue simulation until done, or until TIMLIN is exceeded. This
option is often used with dynamically modified procedures (since we
don’t know at the outset how many total steps will be required). This
is the default.

INIT Flag for different starting procedures. If option NTX is less than 5, INIT
should be equal to 3. If option NTX is greater than or equal to 5, this option
should be equal to 4.

= 3 V(T-DT/2) is obtained by calculating force(T); default.

= 4 Input V(T-DT/2) is used for the starting velocity

T The time at the start (psec). Only for your own use. Not important for the
simulation. Default is 0.0.

DT The time step (psec); default is 0.001. (Note that in the special case where
window growth is requested by using the unrecommended flag combination
(IFTIME = 0 and ISLDYN = 0; line 14), DT is replaced by the value of DTA
on line 15).

VLIMIT Limiting velocity; default is 0.0. If .ne. 0.0, then any component of the veloc-
ity that is greater than abs(VLIMIT) will be reduced to VLIMIT (preserving
the sign), and a warning message will be printed. This can be used to avoid
occasional instabilities in molecular dynamics runs. VLIMIT should gener-
ally be set (if at all) to a value like 20., which is well above the most probable
velocity in a Maxwell-Boltzmann distribution at room temperature. Note that
although it is anticipated that use of a liberal (large) value of vlimit should not
adversely affect the statistics accumulated during a free energy simulation,
this has not yet been definitively demonstrated.

IVEMAX Maximum times VLIMIT may be exceeded. If IVEMAX >0, then IVEMAX
specifies the number of times the limiting velocity VLIMIT can be exceeded
in a simulation. If VLIMIT is exceeded >= IVEMAX times, the simulation
will stop. If IVEMAX =0, there is no limit on the number of times VLIMIT
can be exceeded. Default is 0.

NTC Flag for SHAKE to perform bond length constraints. Constraining the bond
lengths removes the highest frequency motions from the system and usually
allows somewhat larger timesteps to be used.

= 1 SHAKE is not performed (default)

= 2 bonds involving hydrogen are constrained. No bonds which are part
of the pert group are constrained.

2/28/02

GIBBS Page 169

= 3 all bonds are constrained

TOL Relative geometrical tolerance for bond constraints in SHAKE. Smaller val-
ues give tighter tolerances. The (default) recommended value is <= 0.0005
Angstrom

TOLR2 Relative geometrical tolerance for angle and torsion constraints (radians).
Smaller values give tighter tolerances. The (default) recommended value is
<= 0.0001 rad.

NCORC Constraint energy flag.

= 0 No constraint contributions to the free energy are calculated
(default).

= 1 The contributions to the free energy from any constraint whose equi-
librium value changes with lambda will be calculated. This includes:
A) Any constrained internals defined at the end of the input (see flag
INTR, line 13); and B) any SHAKE-en bonds (see NTC).

If NCORC=1 is specified, the program will determine which atoms
of the system have positions which are dependent on the constraints,
and all of these will effectively be included in the "perturbed group".
This forces some time- consuming calculations. If no constraints are
changing with lambda, be sure to set NCORC=0.

The procedure used to perform a PMF makes it difficult to separate
contributions due to the constraints themselves from those due to
non-bonded/electrostatic interactions. For this reason, in these cases
CORC will reflect the sum total of all three types of contributions
and the individual non-bonded/ electrostatic contributions will be
reported as 0’s.

Note: If you are using a "belly" with NCORC=1, you must ensure
that all residues of the pert group are part of the moving belly, and
that, additionally, any residues sharing constrained bonds with the
pert group (if any) are part of the moving belly.

ISHKFL Flag which determines what the program will do in the event of a
SHAKE/internal constraint failure.

= 0 Program halts immediately. This is what the old versions of Amber
did.

= 1 Program will write a restart file containing the coordinates before the
failed call to the constraint routine (+ velocities, if applicable). The
program will then halt.

> 1 The coordinates will not be constrained on any iteration for which
the constraint routine fails. If constraint failure occurs on more than
ISHKFL-1 contiguous steps, the program will stop as described for
ISHKFL=1. This is the default

ITIMTH Defines which method should be used to calculate constraint free energy con-
tributions when NCORC=1 and the Thermodynamic Integration method
(IDIFRG=1) approach is being used.

= 0 Use the Potential Forces (PF) method (default).

2/28/02

GIBBS Page 170

= 1 Use the Constraint Forces (CF) method.

=-1 Use the PF method, override program warnings about constraints
within closed rings.

Tw o methods for determining the constraint free energy contributions
during TI have been derived in the literature. The PF method
appears to be more efficient, and so is the default. However, PF
method cannot be used when any constraints of the system which are
changing with lambda (and hence contribute to the free energy) are
part of a closed ring. In this case, the CF method must be used. The
program will flag any constraints of the perturbed group which are
part of a closed ring, and will stop with a warning if TI is used with
PF in such a case. If none of these constrained bonds change with
lambda, you can still use the PF method, but must specify
ITIMTH=-1 here to ensure you have considered whether this will be
appropriate. It is suggested you NOT set ITIMTH=-1 automatically,
but only after ensuring that it will be appropriate.

JFASTW Fast water definition flag. By default, the system is searched for TIP3P waters,
and special fast routines are used for these molecules. There are two types of
fast routines specific to TIP3P water: 1) A faster, analytic SHAKE algorithm
for 3-point water; 2) A faster routine to calculate non-bonded TIP3P-TIP3P
water interactions.

In normal operation, the program defaults will be acceptable. However, in
rare instances (e.g. for debugging purposes, or when the user has redefined the
definition of a TIP3P water), one may wish to inhibit the use of these fast rou-
tines and/or redefine the default definition used in Amber to define TIP3P
waters. This option makes this possible.

= 0 Normal (default) operation. The default AMBER definition of TIP3P
water is used, and the fast water routines are used where appropriate.

= 1 Use the fast routines for water SHAKE and non-bonds, but redefine
the names the program uses to recognize TIP3P waters. The redefi-
nition names are provided below.

= 2 Use the fast water routine for SHAKE. Do not use the fast water rou-
tine for non-bonds.

= 3 Use the fast water routine for SHAKE. Do not use the fast water rou-
tine for non-bonds. Redefine the names the program uses to recog-
nize TIP3P waters. The redefinition names are provided below (line
17).

= 4 Do not use fast water routines for either SHAKE or non-bonds.

NTF Flag for force evaluation. Typically set to the same value as NTC.

= 1 complete interaction is calculated (default)

= 2 bond interactions involving H-atoms omitted, except bonds in the
perturbed group (use with NTC = 2, see above SHAKE options)

= 3 all the bond interactions are omitted (use with NTC = 3)

= 4 angle involving H-atoms and all bonds are omitted

2/28/02

GIBBS Page 171

= 5 all bond and angle interactions are omitted

= 6 dihedrals involving H-atoms and all bonds and all angle interactions
are omitted

= 7 all bond, angle and dihedral interactions are omitted

= 8 all bond, angle, dihedral and non-bonded interactions are omitted

NTID Flag for solvent pairlist behavior.

= 0 only the first atom of each solvent molecule is used when generating
the non-bonded pairlist for a periodic system (for water, this is the
oxygen). If this atom lies within the specified cutoff, the entire sol-
vent molecule is included in the non-bonded pairlist. This can result
in a substantial speedup in non-bonded pairlist generation, and is rec-
ommended when using water as the solvent. This is the default.

=86 all atoms in a solvent molecule are considered when generating the
non-bonded pairlist for a periodic system. If any atom of the solvent
molecule lies within the specified cutoff, all atoms of the solvent
molecule will be included in the non-bonded list. This is the behavior
of versions of AMBER <= 3.0.

A value of NTID=0 is suggested for calculations using water as a
solvent. For calculations using larger solvent molecules, one should
carefully consider whether using only the first atom is appropriate.
Regardless of the value of NTID, all atoms of the *solute* are con-
sidered when deciding whether to include a second residue in the
interacting non-bonded list for the solute residue. NTID will have no
affect for non-periodic systems.

NTNB Flag for non-bonded pair list generation.

= 0 no pair list will be generated (unlikely you would choose this).

= 1 pair list will be generated (default)

NSNB After NSNB steps the non-bonded pair list will be updated. Default = 50.

IDIEL Type of dielectric function to be used.

= 0 distance dependent dielectric function (for in vacuo simulations of
"aqueous" systems).

= 1 constant dielectric function (always use with explicit solvent, e.g.
water); default.

IELPER Flag to control the "electrostatic decoupling" of the perturbation energy

= 0 Regular run; no electrostatic decoupling (default).

= 1 Only the electrostatic contribution to the free energy is calculated
keeping the geometry and the VDW parameters pertaining to
LAMBDA = 1.

=-1 Only the non-electrostatic (VDW, etc.) contributions to the free
energy are calculated and the system changes from that characteristic
of LAMBDA = 1 to 0 (or from that characteristic of LAMBDA = 0
to LAMBDA = 1 depending on the signs of IFTIME or ALMDEL).

2/28/02

GIBBS Page 172

In electrostatic decoupling, two runs have to be performed, one for
electrostatic and the other for VDW etc. contributions. This is useful
when a polar or charged group is being established or removed.
However, the LAMBDA = 1 state must pertain to the established
group, and the LAMBDA = 0 to the removal of the group. The
decoupling MUST go through the following perturbation cycle: elec-
trostatic LAMBDA = 1 -> 0 with LAMBDA(vdw) = 1, followed by
van der Waals LAMBDA = 1 -> 0. If the simulation is started at
LAMBDA = 0, then reverse the above procedure. In this way,
charges never appear on atoms which do not possess a vdw radius
which avoids very close contacts due to charge-charge attractions.

Notes: (1) Two separate runs are needed to fully carry out the decou-
pling calculation. (2) In the IELPER=+1 phase, any added
restraints/constraints (if INTR > 0) will be fixed at the values they
have when lambda=1. (They will still only be applied, however, over
the ranges specified). (3) The free energy contribution from internal
constraints is never calculated during the IELPER=+1 phase (it is
calculated during the IELPER=-1 phase).

To summarize:

IELPER internals/vdw electrostatics

+1 fixed @ lambda=1 vary

(non-pert) values

-1 vary fixed @ lambda=0

(pert) values

IMGSLT Flag to control the Solute-Solvent interaction in the case of PB simulation

= 0 The Boundary condition is applied to solute-solvent interactions
(default)

= 1 No Solute-Solvent imaging. Solute does not see image solvent.
This assumes that the solute is centered in the periodic system, and is
not free to migrate. Do not use this with mobile solutes. This option
is mainly useful for large solutes.

IDSX0 Flag which controls how the mixed van der Waals parameters are calculated
for atom pairs where one atom vanishes (at either lambda=1 or lambda=0).
(See Ref. 6).

= 0 r*(state where one atom vanishes) = r*(non-vanishing atom) (This is
the way AMBER has done this in the past) Default.

> 0 r*(lambda) will be calculated so that r*(state where one atom van-
ishes) = IDSX0/1000 r*(state where both atoms exist) = r*(A) +
r*(B)

= -1 results in r*(state where one atom vanished) = 0.0

2/28/02

GIBBS Page 173

ITRSLU During a periodic boundary conditions simulation, controls whether SOLUTE
molecules which exit the primary image box will be translated back into the
central box. SOLVENT molecules which exit the central image box are
always translated back into the box. A molecule is considered to have floated
out of the central box if the first atom of the molecule exits the box.

= 1 Both SOLUTE and SOLVENT molecules which exit the primary
image box will be translated back into the box. The system will be
translated every 500 steps so that the center of geometry of the solute
is centered in the primary image box. (Default; recommended for
most systems).

= 2 Same as 1, except that the system as a whole is not periodically
translated to keep the solute centered in the primary image box.

= 0 Only SOLVENT molecules will be translated back into the primary
image box. SOLUTE molecules are not translated.

IOLEPS Controls how parameter mixing is performed for non-bonded interactions.

= 0 Mixing of epsilon (well-depth) van der Waals parameters done as

ε (λ) = λ * ε (mixed, λ = 1) + (1 − λ) * ε (mixed, λ = 0)

Mixing of electrostatic interactions done as

q1q2(λ) = λ * q1q2(λ = 1) + (1 − λ) * q1q2(λ = 0)

This is the default

= 1 Mixing of epsilon done as

ε (λ) = √ (ε i (λ)ε j (λ))

Mixing of electrostatics done as

q1q2(λ) = q1(λ)q2(λ)

Setting IOLEPS=1 forces mixing to be done as in older versions (e.g.
3.0, 3A) of AMBER. The "new" mixing scheme (IOLEPS=0) has
several advantages, including A) a finite derivative for van der Waals
interactions involving an atom which "disappears" at one end point;
and B) Interaction between pairs of atoms where one/both atoms
"disappear" at both end points never contribute to the energy. [One
side- benefit of this is that it allows duplicate topologies; thus one
can perform perturbations using the "CHARMM" methodology, if
desired]. Note that if IDIFRG = 1 (thermodynamic integration), the
epsilon parameters are always mixed as described for IOLEPS = 0.

INTPRT Determines which energies contribute to the calculation of the free energy
change.

= 0 No intra-perturbed group energies are accumulated (Default; same as
pre-4.0 versions of AMBER)

= 1 intra-pert. group non-bond energies accumulated as well (but no
1-4’s).

= 2 intra-pert. group non-bond energies accumulated (including 1-4’s).

2/28/02

GIBBS Page 174

= 3 intra-pert group internal energies accumulated (bonds, angles, tor-
sions)

= 4 intra-pert group non-bond and internal energies accumulated

= 5 intra-pert group non-bond, 1-4, and internal
energies accumulated

Note: If any PMF contributions are being calculated (NCORC = 1,
line 9), all intra-perturbed group non-bonded contributions will be
calculated if INTPRT = 1,2,4 or 5 (when NCORC=1, 1-4’s are not
broken out separately).

ITIP By default (ITIP=0), GIBBS assumes that if you are running a periodic
boundary conditions (PBC) simulation with solvent, the solvent is TIPNP
water. A special characteristic of this solvent model is that there are no h-bond
(10-12) interactions between any pair of solvent molecules. A potential
speedup is thus obtained by skipping all such h-bond interactions. If you
choose to use a solvent model where there should be h-bond (10-12) interac-
tions calculated between pairs of solvent molecules, set ITIP to any value
other than 0. Note that in either case, all 10-12 interactions between solvent
and solute molecules will still be determined normally.

CUT The primary cutoff distance for the non-bonded pairs. Default = 8.0.

SCNB The scale factor for 1-4 vdw interactions; if (SCNB .EQ. 0.0) then SCNB =
2.0, which is the default.

SCEE The scale factor for 1-4 electrostatic interactions There is no namelist default,
since the 1991 and previous force fields used 2.0, while the 1994 force field
uses 1.2.

DIELC Dielectric constant for the electrostatic interactions; if (DIELC .LE. 0.0) then
DIELC = 1.0. Default is 1.0.

CUT2ND An (optional) secondary cutoff. If CUT2ND > 0.0, then at every nonbonded
update (every NSNB steps), the energies and forces due to interactions in the
range CUT< Rij <= CUT2ND will be determined. These energies and forces
will be added to the non-bonded interactions within CUT distance at every
timestep. The idea is that long-range interactions change more slowly than
short range interactions, and thus this dual cutoff method allows one to
include longer-range information at only a moderate additional cost. Default
is 0.0.

CUTPRT An (optional) alternative cutoff to be used for interactions with the perturbed
group. If CUTPRT and CUT2ND are both defined, interactions in the range
CUTPRT < Rij <= CUT2ND will constitute the secondary cutoff range for
interactions with the perturbed group. Default is 0.0.

NTPR Flag for printing energy related quantities. for every NTPR steps these quanti-
ties will be output. Default is 100.

NTWX Flag for packing the coordinates. For every NTWX steps the coordinates will
be dumped through file ’PCOORD’ in format (10F8.3). If NTWX=-1
(default), no dumping will be performed.

NTWV For every NTWV steps the velocities will be written in file ’PVEL’ in format
(8F8.4). If NTWV=-1 (default), no dumping will be performed.

2/28/02

GIBBS Page 175

NTWE Every NTWE steps energy info is written in file ’PEN’ in formatted form. If
NTWE=-1 (default), no dumping will be performed.

NTWXM After NTWXM steps the NTWX switch will be inactive. Default is 999999.

NTWVM After NTWVM steps the NTWV switch will be inactive. Default is 999999.

NTWEM After NTWEM steps the NTWE switch will be inactive. Default is 999999.

IOUTFM Flag for format of velocity and coordinate sets

= 0 Formatted (default)

= 1 Binary

ISANDE Flag to output enthalpies and entropies, as well as free energies. Note that
these quantities are typically an order of magnitude or more less precise than
free energy values, and will be much more sensitive than free energies to the
completeness of the ensemble statistics collected. See the discussion follow-
ing the input description for more information. Setting ISANDE = 1 will also
force the printing of the integrand quantity <∂V/∂λ > when Thermodynamic
Integration is being performed (see the IDIFRG flag, 14.6). This can be useful
if the user wishes to apply an alternative integration algorithm. Default is 0.

IPERAT Request that free energy components or derivatives be calculated. Note that
free energy components can be determined during any standard free energy
simulation. Free energy derivatives can only be calculated in a special simula-
tion where lambda does not change.

= 0 No free energy components or derivatives will be calculated
(default).

= 1 Report free energy components. Components will be be reported in
file PATNRG on a per-atom basis.

= 2 Report free energy components. Components will be be reported in
file PATNRG on a per-residue basis.

= 3 Report free energy components. Components will be be reported in
file PATNRG on a per-molecule basis.

= 4 Calculate/report free energy components or derivatives (depending
on the flag ICMPDR). Values will be reported in file PATNRG for
the atoms/groups defined at the end of input using GROUP input.

For free energy components, free energies will be logged as defined
by the GROUP definition, subject to the condition that only those
atoms which are part of the perturbed group or which move with an
added CONstraint will ultimately be included. All atoms not explic-
itly included in a group will be put in a final single group. For free
energy derivatives, derivatives will be logged only for those atoms
included in a group definition. Any atom of the system may be desig-
nated as part of any group (but each atom will be a member of at
most one group). Typically, you will place individual atoms in their
own groups when calculating derivatives.

IATCMP If free energy components are being reported, by default only the total free
energy per atom/residue/molecule/ group is reported. By setting IATCMP > 0,
one can force the components to be broken down into electrostatic, non-

2/28/02

GIBBS Page 176

bonded and internal contributions. IATCMP has no affect when free energy
derivatives are being calculated.

= 0 Do not break free energy components into contributions (default).

= 1 break free energy componenets into contributions.

NTATDP Free energy components/derivatives will only be reported every NTATDP
steps. Note that if free energy components are being logged, a free energy
report will occur at a particular multiple of NTATDP steps only if the free
energy accumulators have been updated since the last report. For free energy
derivatives, energies will be reported every NTATDP steps in all cases. If
NTATDP = -1, it is set to NTPR; default is 0.

ICMPDR

= 0 no free energy derivatives (default).

= 1 If IPERAT=4, log the free energy derivatives with respect to charge
and the non-bonded parameters epsilon and r*. If the contributions of
constraints to the free energy are being calculated (NCORC = 1),
then derivatives with respect to constraints in the perturbed group
(and added constraints) will also be calculated.

Free energy derivatives can only be calculated for lambda = 0 or
lambda = 1. It is sufficient to define a "null" perturbed group in
PARM if you simply wish to determine the non-bonded free energy
derivatives of specified atoms.

NCMPDR If free energy derivatives are being calculated (IPERAT=4 and ICMPDR=1),
NCMPDR gives the number of steps of effective "equilibration." After the
first NCMPDR steps, the accumulators for the free energy derivatives are
cleared and reset. Free energy derivatives reported from this point forward
will only reflect averaging since the accumulators were cleared. Some people
prefer to use a post-processing program to analyze free energy derivatives.
Such programs can usually "remove" a giv en initial portion of the free energy
derivative information from subsequent totals. In such a case, you may wish to
set NCMPDR=0 here (no "equilibration" phase), and pick the amount of data
to discard in the post-processing program.

NTWPRT Coordinate/velocity archive limit flag. This flag can be used to decrease the
size of the coordinate / velocity archive files, by only including that portion of
the system of greatest interest. (E.g. one can print only the solute and not the
solvent, if so desired).

= 0 Coord/velocity archives will include all atoms of the system
(default).

< 0 Coord/velocity archives will include only the solute atoms.

> 0 Coord/velocity archives will include only atoms 1->NTWPRT.

NTR Flag for restraining specified atoms.

= 0 Classical MD (default)

=
MD with restraint of specified atoms

2/28/02

GIBBS Page 177

NTRX Flag for reading the cartesian coordinates for restraint from unit PREFC.
Note: the program expects coordinates for all atoms from which a subset is
selected by the GROUP input which follows.

= 0 binary form

= 1 formatted form (default)

TA UR The relaxation time for restraint. Default is 1.0 ps.

INTR

= 0 No additional internal restraints or constraints will be read (default).

> 0 Additional internal restraints/constraints will be read following the
normal input. Storage will be allocated for a maximum of INTR
added restraints/constraints. These restraints/constraints can be used
for e.g. a PMF calculation.

IBIGM To calculate the free energy contributions of a constraint (if NCORC=1), the
free energy at lambda±d_lambda is evaluated by shifting the value of the con-
straint to its value at lambda±d_lambda. This change in the value of the con-
straint can be effected either by performing half of the shift at each end/side of
the internal, or by performing the entire shift at one end.

= 0 Half of the shift is performed at each end of the internal.

= 1 The entire shift occurs at the end/side of the internal which results in
fewer atoms being moved. This is the default.

The number of atoms whose positions change with shifting the con-
straint affects how quickly the calculation can be performed. Setting
IBIGM = 1 can significantly speed up some calculations (e.g. when
rotating a ring about a constrained torsion which joins it to a protein),
and IBIGM should typically be set to 1 forin vacuosimulations. In
all cases, GIBBS determines which interatomic nonbonded distances
depend on constraint values, and only these are recalculated when
NCORC=1.

ISFTRP Causes the 6-12/10-12 functions used for non-bonded interactions to be
replaced by "soft repulsion" terms of the form

RWELL* (r 2 − r *2)2

where r* is the optimal interaction distance between a pair of atoms, calcu-
lated from their respective van der Waals radii. This function is sometimes
useful in structure refinement, but should *not* typically be used in free
energy calculations. Atoms in the perturbed group are always treated by nor-
mal (6-12 or 10-12) non-bonded forces, regardless of the value of ISFTRP.

= 0 regular 6-12/10-12’s. No soft repulsion. Default.

= 1 replace 6-12’s by soft repulsion.

= 2 replace 10-12’s by soft repulsion, as well.

RWELL Force constant (in kcal/mol) used for soft repulsion interactions. Default is
5.0.

IFTIME Mutation flag. If ISLDYN=0, then if IFTIME = 0 (default) a standard Win-
dow Free Energy Perturbation will be carried out. The perturbation will start

2/28/02

GIBBS Page 178

at lambda = ALMDA, and proceed in equally spaced intervals of
delta(lambda) = ALMDEL until 1 (ALMDEL > 0) or 0 (ALMDEL < 0) is
reached. At each value of lambda, NSTPE steps of equilibration and NSTPA
steps of data collection (see line 15) will be performed, and energy evaluated
using Equation 2. If IFTIME =±1 A "Slow Growth" perturbation will be car-
ried out. The simulation will start at lambda = ALMDA, and will be run in
either the 0->1 direction (IFTIME = +1) or 1->0 direction (IFTIME = -1).
CTIMT gives the number of psec of dynamics which would be used to per-
form the complete change 0->1 (or 1->0). The actual length of the simulation
will depend on the starting value ALMDA.NOTE IFTIME is included for
backwards compatibility with input files created for previous versions (< 4) of
AMBER. However, it is strongly recommended that you use the ISLDYN
flag to specify the type of simulation desired. If ISLDYN.NE.0, IFTIME is
ignored.

CTIMT The total length of the MD simulation (in psec) to be carried out in perform-
ing a slow growth simulation which transforms state lambda = 0 into lambda
= 1 (or vice-versa). Note that this variable does not control the number of
steps which will actually be run. For example, if CTIMT = 10psec, ALMDA
= 0.0, ISLDYN = +1, and NRUN*NSTLIM*DT = 5psec, only half of the
desired simulation would be carried out. The remainder would have to be car-
ried out by a restart. CTIMT is only used when ISLDYN =±1 or
(IFTIME=±1 and ISLDYN = 0). Default is 0.0.

ALMDA The starting value of lambda for this simulation. The value can be on the
inclusive interval 0.0-> 1.0. Default is 1.0.

ALMDA = 1 corresponds to the "initial" state and ALMDA = 0 corresponds
to the "final" state. Intermediate "states" are defined by a linear combination
of the parameters representative of (lambda = 0) and (lambda = 1). For restart
simulations (IREST=1, line 2), ALMDA is read directly from the restart file,
and the value specified here is ignored.

ALMDEL For _Standard_ (fixed width) Window and TI simulations, ABS(ALMDEL)
gives the width of each window or integration interval. If double-wide sam-
pling is used with Window Growth (default), at each value of lambda, the free
energies to both +ALMDEL and -ALMDEL are evaluated. This results in
"double wide sampling" (see the introductory text). If (IFTIME=0 and ISL-
DYN=0), the sign of ALMDEL determines the direction of the change. If
ISLDYN=±3, the sign of ISLDYN determines the direction of the change.
ALMDEL should be chosen so that the free energy change over any interval is
not too large. It has been suggested (somewhat arbitrarily) that as a rule the
free energy change/window should not exceed 2RT. ALMDEL is only used
when ISLDYN =±3 or (IFTIME=0 and ISLDYN = 0). Default is 0.1.

ISLDYN Free Energy Method flag. It is recommended that you use this flag exclu-
sively, and ignore IFTIME. Default is -3.

= ±1 Perform a Slow Growth simulation. The simulation will be started at
ALMDA, and CTIMT psec will be required to complete the conver-
sion to the end (0 or 1). If ISLDYN = +1, the simulation will be car-
ried out in the direction 0-> 1. If ISLDYN = -1, the simulation will
be carried out in the direction 1-> 0.

2/28/02

GIBBS Page 179

= ±2 Perform a Dynamically Modified Window simulation. The simula-
tion will be started at ALMDA and progress either in the direction
0-> 1 (if ISLDYN = +2) or 1-> 0 (if ISLDYN = -2). The numbers of
equilibration and data collection steps performed at each window are
given by NSTMEQ and NSTMUL (on this line). If IDIFRG = 0, the
energy will be evaluated at each interval using Equation 2 (FEP). If
IDIFRG = 1, thermodynamic integration will be carried out using
Equation (4).

= ±3 Perform a "standard" Window Growth simulation (with fixed width
lambda intervals). The perturbation will start at lambda = ALMDA,
and proceed in equally spaced intervals of delta(lambda) =
abs(ALMDEL) until 1 (ISLDYN > 0) or 0 (ISLDYN < 0) is reached.
At each value of lambda, NSTMEQ steps of equilibration and NST-
MUL steps of data collection (see this line) will be performed. If
IDIFRG = 0, the energy will be evaluated at each interval using
Equation 2 (FEP). If IDIFRG = 1, thermodynamic integration will be
carried out, using Equation (4).

IDIFRG Thermodynamic integration flag.

= 0 No thermodynamic integration (default).

= 1 If windows or dynamically modified windows have been specified,
the energy will be calculated using thermodynamic integration (TI)
(Equation 4). The integrand will be evaluated at the endpoints of
each "window", and the integral will be approximated using the
trapezoidal rule (see the discussion following the input description).
In addition to the integrated free energy, if ISANDE is set = 1 (see
flag 12.10), the value of <∂V/∂λ > will be output at every energy
update, so a different integration algorithm can be applied by the
user, if desired. If slow growth has been requested, setting
IDIFRG=1 has the effect of performing the slow growth summation
using the non-averaging equivalent of the TI equation (4), rather than
the FEP equation (2).

NSTMEQ number of steps of equilibration to be used for each window if ISLDYN =±2
or +-3. (Note that if windows are instead requested using the flag combina-
tion IFTIME = 0 and ISLDYN = 0, NSTPE is used). Default is 2.

NSTMUL number of steps of data collection to be used for each window if ISLDYN =
±2 or +-3. (Note that if windows are instead requested using the flag combi-
nation IFTIME = 0 and ISLDYN = 0, NSTPA is used). Default is 2.

NDMPMC Every NDMPMC windows, statistics will be dumped to the statistics file
(MICSTAT). The statistics file contains a condensed format record of the free
energy for each window interval. The MICSTAT file is not written with slow
growth, or if NDMPMC is set < 0. By default NDMPMC=100. NDMPMC
cannot exceed 100.

IDWIDE Allows double-wide sampling to be turned off with FEP.

= 0 Double-wide sampling performed when FEP windows are being cal-
culated (default).

2/28/02

GIBBS Page 180

= 1 Double-wide sampling turned off when FEP windows are being cal-
culated.

Double wide sampling means at each value we calculate the free
energy in both the "forward" and "reverse" direction. This gives an
intra-run consistency check (lower bound on the error), but requires
we calculate every interval twice. The simulation can be run in
roughly half the time, without the forward/reverse consistency check,
by setting IDWIDE=1. The nature of thermodynamic integration
(IDIFRG=1) is such that double wide sampling is never carried out.
IDWIDE has no effect for such calculations.

IBNDLM By default (IBNDLM=0), lambda±d_lambda is constrained to the range
0<lambda±d_lambda<1. If IBNDLM=1, then lambda±d_lambda can exceed
the range 0->1. Useful when doing PMF-type calculations. Ignored for regu-
lar slow growth.

IAVSLP The current dG/dLAMBDA slope will be approximated by a linear fit to the
Accumulated G vs. LAMBDA data for the previous IAVSLP windows. Maxi-
mum value = 1000; default is 8.

IAVSLM Until IAVSLM windows have been collected, the window spacings will be
fixed at ALMDL0 (line 14c). When IAVSLM windows have been collected,
the slope will be calculated over all available windows, until IAVSLP win-
dows are available. Default is 2.

i.e. #_windows < IAVSLM : dLAMBDA = ALMDL0

IAVSLM <= #_windows < IAVSLP :

dLAMBDA calculated from slope over #_windows

#_windows >= IAVSLP :

dLAMBDA calculated from slope over previous IAVSLP

windows

If IAVSLM=-1, window widths will be fixed at ALMDL0 until IAVSLP win-
dows are available.

ISLP Determines the direction in which the slope is calculated.

= 0 (default) use the appropriate value of ISLP (-1 or 1) to calculate the
slope from energies calculated in the same direction as the simulation
(recommended).

= 1 the slope is calculated from the forward (0->1) energy at each step.

=-1 the slope is calculated from the reverse (1->0) energy at each step.

= 2 the slope is calculated using the average of the redundant free energy
values (from double wide sampling) over the interval in the direction
opposite to the simulation, i.e. G(reverse[curr window] - G(for-
ware[prev window])/2 or G(forward[curr window] - G(reverse[prev
window])/2 for simulations run 0->1 and 1->0, respectively. This
option can be useful when very few points are used to evaluate each
slope (e.g. IAVSLP = 2).

= 3 the slope is calculated using the average of the forward and reverse
energies at each lambda.

2/28/02

GIBBS Page 181

For best results in most cases, the slope should be calculated in the
same direction as the simulation. This is the default behavior
(ISLP=0). With thermodynamic integration, or when double-wide
sampling is defeated, ISLP has no effect. Only options ISLP=0 or
ISLP=3 should typically be used when AMXRST > 0.

CORRSL If the correlation coefficient for a linear fit to the previous IAVSLM windows
is < CORRSL, the number of windows over which the slope is calculated will
be halved (for this determination of the slope only), and the slope calculated
again. This process continues until the correlation coefficient is > CORRSL.
Default is 0.8.

AMXMOV The target free energy change per window. If M is the slope over the previous
IAVSLP windows, the next value of dLAMBDA is chosen as dLAMBDA =
AMXMOV/M Note that when double wide sampling is defeated (IDWIDE=1)
while using a window FEP technique (IDIFRG=0), the free energy change at
a window is defined as the total ("forward" + "reverse") energy change. This
differs from the definition when double wide sampling is used, where the free
energy change at a window is approximately 1/2 * ("forward" + "reverse").
Thus, AMXMOV should be suitably increased when IDWIDE = 1. Default is
0.1.

IAVDEL Number of windows over which the forward and reverse energies will be
compared. If IAVDEL<0, no comparisons will be carried out. IAVDEL should
always be set <0 when thermodynamic integration is used (IDIFRG = 1).
Maximum value = 1000; default is -1.

IAVDEM The relationship between IAVDEL and IAVDEM is analogous to that between
IAVSLP and IAVSLM. Default is 2.

AMXDEL If < ABS (DA(for)-DA(rev)) > .GT. ABS(AMXDEL) then the next
dLAMBDA will be scaled as [< ABS (DA(for) - DA(rev)) > / AMXDEL]
**2 * dLAMBDA If AMXDEL < 0, then scaling occurs in all cases. Default
is 1.0.

ALMDL0 Until enough intervals have been calculated to allow determination of
dG/d_lambda and d_lambda consistent with IAVSLP and IAVSLM, an inter-
val width of ALMDL0 will be used. Default is 0.0001.

DLMIN The minimum allowable window width. Default is 1.0D-6.

DLMAX The maximum allowable window width Default is 0.1.

AMXRST If the free energy change, dG, over any window is greater than AMXRST,
then the data collection phase for that window will be re-performed using a
reduced value of dLAMBDA. The new value of dLAMBDA is determined as
dLAMBDA(new) = (dLAMBDA(old)/dG) * AMXMOV. AMXRST should
not be set too close to AMXMOV, or too many windows will be recalculated
(which is inefficient). By default, AMXRST=5.*ABS(AMXMOV).

NORSTS If this is a restart run, and NORSTS=1, then the restart information relating to
dynamically modified windows is not read (cold start for the dynamically
modified windows). NORSTS is ignored if this is not a restart run. Normally,
NORSTS should be set to the default of 0.

NTSD The statistics relating to dynamically modified windows are written to file
POUT every NTSD. If NTSD=0, then NTSD is set equal to NTPR (line 12),

2/28/02

GIBBS Page 182

and these statistics will be output every time the standard energy information
is printed. Default is 0.

ALMSTP(1) Allows the values of AMXMOV, DLMIN, DLMAX, AMXRST, and NTSD to
be different for different ranges in LAMBDA.

> 1 or < 0
the values defined in lines 14a-14c will remain in effect for the whole
run.

> 0 and < 1
the values defined in lines 14b-14d will remain in effect for the range
of LAMBDA ALMDA-> ALMSTP(1). In this case, _additional
line(s)_ are read with the values of the above variables over various
ranges of LAMBDA. Each line has the format

AMXMOV, DLMIN, DLMAX, AMXRST, NTSD, ALMSTP(I)

FORMAT(4F14.9,I5,F14.9)

These lines are read until ALMSTP(I) > 1 or ALMSTP(I) < 0. Each
set of values applies to the range in LAMBDA ALMSTP(I-1) ->
ALMSTP(I). Note that the for the last line, ALMSTP(I) must be
greater than 1, or less than 0 (not equal to). This is avoid machine
precision problems. Note also that, at present, "namelist"-format
input always assumes ALMSTP(1) < 0 (i.e. AMXMOV, DLMIN, etc.
remain fixed over the entire run). If you wish to use the functionality
described above for ALMSTP(), you must use formatted input.

NSTPE The number of steps of Equilibration before collecting the Free Energy Statis-
tics. For each window the system is equilibrated for NSTPE steps. (When
ISDYN=±2 or±3, NSTMEQ serves the same purpose). Default is 2.

NSTPA The number of steps for data collection. The averaging is performed over this
number of steps. (When ISLDYN=±2 or ±3, NSTMUL serves the same pur-
pose). Default is 2.

DTA The time-step used for window runs specified by IFTIME=0 and ISLDYN=0.
All other runs use the time-step specified on line 8. Default is 0.001

IVCAP Flag to control Cap Option. The Cap option is to solvate a spherical portion
of a solute and to hold the solvent from evaporating through a half-harmonic
potential.

= 0 Cap will be in effect if it is passed from the PARM file (default).

= 1 Cap will be activated except that the Cap atom pointer would be
modified.

= 2 Cap will be inactivated.

NATCAP The Cap atom pointer It is the last Non-Cap atom number. If IVCAP.EQ.1
then the pointer passed from the PARM file will be overwritten by this num-
ber. Default is 0.

FCAP The Force Constants for the Cap Atoms. Default is 0.0

2/28/02

GIBBS Page 183

WA TNAM The residue name the program expects for TIP3P waters. Default is "WAT".

OWTNM The atom name program expects for the TIP3P oxygen. Default is "O ".

HWTNM1 The atom name program expects for the TIP3P 1st H. Default is "H1 ".

HWTNM2 The atom name program expects for the TIP3P 2nd H. Default is "H2 ".

The following card is readonly if I3BOD.NE.0; (This information must be provided in the for-
matted form given, even if namelist format input is used above.)

- 18A- 1) N3B, NION FORMAT(2I5)

The number of 3body interactions to be defined, and the number of ions in the system.

Next, include N3N cards 18B to define all 3-body interactions:

- 18B- 1)AT1(I) 2)AT2(I) 3)ACON1(I) 4)BETA31(I) 5)GAMMA31(I)

6)ACON0(I) 7)BETA30(I) 8)GAMMA30(I)

FORMAT(A4,A4,2X,6E10.3)

AT1(I) The second atom in this 3-body interaction.

AT2(I) The third atom in this 3-body interaction.

ACON1(I) The pre-exponential factor for this 3-body interaction for the lambda = 1 state.

BETA31(I) The beta value for this 3-body interaction, for the lambda = 1 state.

GAMMA31(I) The gamma value for this 3-body interaction, for the lambda = 1 state.

ACON0(I) The pre-exponential factor for this 3-body interaction for the lambda = 0 state.

BETA30(I) The beta value for this 3-body interaction, for the lambda = 0 state.

GAMMA30(I) The gamma value for this 3-body interaction, for the lambda = 0 state.

- 19 - IDENTIFICATION OF ATOMS WITH POSITION CONSTRAINTS

*** ONLY IF NTR = 1 ***

Constraint reference atoms are obtained by first reading coordinates for the entire structure
through file ’PINCRD’ or ’PREFC’, then specific constraint atoms are selected by group. See the
section on GROUP in the Appendices for format. Does not support a namelist convention.

- 20 - IDENTIFICATION OF ATOMS FOR BELLY RUN

***** ONLY IF IBELLY .GT. 0 *****

The belly atoms are loaded as groups. Consult the GROUP section in the Appendices for a
description of how to define a group. The group definition immediately follows the end of the

2/28/02

GIBBS Page 184

&cntrl namelist.The GROUP input does not support a namelist convention.

- 21 - DEFINITION OF GROUP INPUT FOR FREE ENERGY COMPONENTS

OR DERIVATIVES ***** (ONLY IF IPERAT = 4) *****

For free energy components, free energies will be logged as defined by the GROUP defini-
tion, subject to the condition that only those atoms which are part of the perturbed group or which
move with an added CONstraint will ultimately be included. All atoms not explicitly included in
a group will be put in a final single group.

For free energy derivatives, derivatives will be logged only for those atoms included in a
group definition. Any atom of the system may be designated as part of any group (but each atom
will be a member of at most one group). Typically, you will place individual atoms in their own
groups when calculating derivatives.

Note that in GIBBS, GROUP input supports two new features that can be helpful in defining
the input for free energy components or derivatives. Both allow the creation of multiple single-
atom groups:

ATOM -IAT1 IAT2

(1st atom number negative) will place each atom from IAT1 to IAT2 in its own group.

RES -IRES1 -IRES2

(both residue numbers negative) will place each atom of every residue in the range
IRES1->IRES2 in a separate group. Group definition syntax is otherwise the same as described
in the manual.

- 22 - DEFINITIONS OF INTERNAL RESTRAINTS/CONSTRAINTS

*** ONLY IF INTR > 0 (line 13) ***

Setting INTR > 0 allows the user to define here a series of internal restraints and constraints
whose force constants and equilibrium values are a function of lambda.Restraint/constraint defi-
nitions must be entered in the formatted form shown below, not in a namelist.
Restraints/constraints are read in as pairs of lines:

line A: IAT1,IAT2,IAT3,IAT4,IUMB,IZE,ITOR,RLMDA1,RLMDA2

FORMAT (7(I5,1X),2F10.5)

line B: RKEQ1,REQ1,RKEQ2,REQ2,IPER,IPER2

FORMAT (4F10.5,2I5)

As many restraints/constraints may be defined as are desired. A blank record signals the end of
the input. This data must be entered in the formatted form shown.It does not support a namelist
convention.

2/28/02

GIBBS Page 185

IAT1-->IAT4 The absolute atom numbers for the atoms defining the restraint. If an atom
number is <0, the absolute value of the atom number is used (additional
behavior for <0 values is defined when IZE=1; see below).

IAT3 = IAT4 = 0 : Bond restraints/constraints

IAT4 = 0 : Angle restraints/constraints

IAT1->IAT4 non-zero: Torsion restraints/constraints

RLMDA1

RLMDA2 The restraint/constraint will be applied only over the range in lambda
(RLMDA1, RLMDA2).

RKEQ1

REQ1 The force constant in kcal/mol and equilibrium value, respectively, for the
restraint/constraint at lambda = RLMDA1.

RKEQ2

REQ2 The force constant in kcal/mol and equilibrium value, respectively, for the
restraint/constraint at lambda = RLMDA2. If RLMDA1=RLMDA2, the force
constant and eq. value are fixed at RKEQ1 and REQ1 (RKEQ2 and REQ2 are
ignored). RKEQ1 and RKEQ2 are ignored for constraints (ITOR=2). If
REQ1=999. or REQ2=999., the corresponding equilibrium value is set to the
current value of the internal coordinate (as determined from the input set of
coordinates PINCRD). If ABS(REQ1) > 1000, the corresponding equilibrium
value is set

REQ1 < 0: REQ1 = current_value - [ABS(REQ1)-1000.]

REQ1 > 0: REQ1 = current_value + [ABS(REQ1)-1000.]

If ABS(REQ2) > 1000, REQ2 is analogously reset.

Intermediate Keq(λ) and Req(λ) are determined by linear interpolation
between the force constants and equilibrium values at RLMDA1 and
RLMDA2. No restraint/constraint is applied outside the range
(RLMDA1,RLMDA2).

IZE

= 0 The restraint/constraint defined here is used _in addition to_ other
parameters corresponding to this atom sequence from parm (if any).

= 1 The restraint parameters defined here _replace_ overlapping parame-
ters from parm (if any) for this atom sequence. When IZE=1, any
atom number IAT1->IAT4 which was specified as < 0 has a special
meaning: It allows a "wildcard" match to the corresponding atom
number when replacing parameters from parm. For example, the
sequence -1 3 8 -14 would result in a torsional restraint which would
replace parameters for all torsions centered on the bond between
atoms 3 and 8. IZE is read but ignored when ITOR=2 (constraints).

IUMB Determines the type of restraint.

2/28/02

GIBBS Page 186

= 0 The restraint is to be considered part of the molecular force field.
The free energy contribution from the restraint is calculated by the
standard formula (c.f. Equation 2).

= 1 The restraint is considered to be an "umbrella" term. The effects on
the ensemble of the restraint are evaluated using the following func-
tion in place of Equation 2:

∆G = − RT ln(< e−∆V/RTeφ/RT >V+φ / < eφ/RT >V+φ) ,

where φ is the sum of all umbrella restraint terms and∆V is as
described for Equation 2. IUMB is ignored for constraints
(ITOR=2). IUMB = 1 will not work correctly with slow growth or
thermodynamic integration.

ITOR Functional form/constraint flag.

= 0 If this is a torsional restraint, a potential of the form

Ktor (τ − τ 0)2

is used. This functional form is always used for bonds and angles
(ITOR = 0 has no effect for bonds/angles).

= 1 If this is a torsional restraint, a potential of the form

Ktor (1 − cos(τ − τ 0))

is used. (ITOR = 1 has no effect for bonds/angles).

= 2 Then a constraint, rather than restraint, is applied to the correspond-
ing internal coordinate. This is applicable to all types of internal
coordinates (distances, angles, torsions). If NCORC = 1 (line 9),
then an effective "potential of mean force" (PMF) contribution to the
free energy will be calculated for this internal coordinate. General
"holonomic" internal constraints are used, as described in Reference
7.

When ITOR = 2 (internal is being constrained), IZE is ignored, and
the following occurs:

For bonds and angles, if the constrained internal matches an internal
in the topology file, force constant parameters for matching internal
will be set to 0.

For torsions, if the constrained internal matches an internal in the
topology file, A) forces for all torsions centered on the same bond
will be omitted B) The contributions to the free energy of all torsions
centered on the same bond as the constraint will be calculated. This
is necessary because several torsions can be centered on a central
bond, and there is no fixed relative arrangement for these torsions.

IPER IPER can be used to define a simulation where two internal coordinates will
be varied with two independent values of lambda. Such a simulation can be
used to generate a free energy internal-internal map (sort of a free energy
equivalent to a Ramachandran map) to be generated.

The output of this option is somewhat complex, and is intended for post-pro-
cessing by a separate program. Any 2-D run of value will necessarily be very

2/28/02

GIBBS Page 187

compute-intensive, and a number of issues must be considered before under-
taking such a simulation. This option should generally be avoided by the
novice user. If you are considering performing such a simulation, you are
urged to read Reference 8 (see above) first. For use with the IPER flag, we
define:

primary lambda
the "normal" lambda; that is, the lambda used in standard GIBBS
runs to describe how the system varies between the initial and final
states.

secondary lambda
a second lambda, which is translated from 0->1 at each value of the
"primary" lambda.

= 0 This restraint will vary with the primary lambda; i.e. the equilibrium
value and force constant will be a function only of the primary
lambda. This is standard behavior.

> 0 This restraint will vary with the secondary lambda; i.e. the equilib-
rium value and force constant will be a function only of the sec-
ondary lambda. Lambda will be varied from 0->1 for this restraint in
a series of IPER equally-spaced intervals (windows). The "sec-
ondary" lambda is not used unless one or more restraints are defined
with IPER > 0.

The number of windows used for each "primary" restraint will be the same,
and the number used for each "secondary" restraint will be the same. The first
IPER(I) > 0 sets the number of windows used for _all_ secondary restraints.

If secondary restraint(s) are requested, the value of IPER2 (see below) corre-
sponding to the first value of IPER(I) > 0 defines the number of windows used
for every primary restraint. Note that any dynamically modified window or
slow growth flags (card 14) will be defeated in this case.

When calculating PMF-type energies (if NCORC=1), constraints will be
applied in two cycles. First, dG will be calculated for +-d(internal) for only
those internals for which IPER=0. Then a dG will be calculated +-d(internal)
for only those internals for which IPER>0.

Any parameters (other than constraints) that vary with lambda will only
change when lambda for the primary constraints changes.

If IPER > 0, window or dynamically-modified window growth must have
been requested (line 14). IPER cannot be set > 0 with slow growth or with
thermodynamic integration (IDIFRG > 0).

The matrix of energies from a 2-D run is contained in file CONSTMAT. A
matrix can be generated with either IDWIDE = 0 or IDWIDE = 1, but it is
strongly recommended that IDWIDE = 1 (no double-wide sampling) be used.
In this case, five free energy difference are evaluated from each ensemble, cor-
responding to moves from (lam1, lam2) to (lam1, lam2+d_lam2), (lam1,
lam2-d_lam2), (lam1+d_lam1, lam2), (lam1-d_lam1, lam2), (lam1-d_lam1,
lam2-d_lam2). This set allows the whole free energy map to be evaluated
most efficiently (see the Pearlman and Kollman reference [8] noted above).

2/28/02

GIBBS Page 188

The "secondary" lambda always changes in the "forward" direction, always
starts at 0.0, and always ends at 1.0. After lambda has gone from 0->1. The
primary lambda is incremented one step, the secondary lambda is reset to 0,
and another cycle of secondary lambda changes occurs. At the start of each
cycle of changes in the "secondary" lambda, the current coordinates are stored
in file CNSTSCRT.

IPER2 If IPER > 0 for a particular restraint/constraint ("secondary" restraints
defined), IPER2 gives the number of "windows" used in translating the "pri-
mary" lambda from 0 to 1. See the description of IPER above. If IPER > 0,
IPER2 fixed-width windows will be used for the "primary" restraints, regard-
less of the behavior requested by ISLDYN, etc. (lines 14-ff).

7.8. Choices Affecting Free Energy Calculations

David A. Pearlman
(minor modifications by DAC)

The development of ever-more-powerful computers, combined with the wide dissemination
of modeling packages like AMBER, puts the power to perform valuable calculations in the hands
of an increasingly large number of scientists. It is tempting to say that, given the increasing
sophistication of such programs, all one needs is the appropriate hardware and software to per-
form good experiments.

But this is not the case. As modeling programs have grown more sophisticated, they hav e
sprouted an ever-increasing array of options−options which must be properly chosen, if worth-
while results are to be obtained. And even if the options are appropriately set, one must ensure
that the program is properly suited for the chosen application. Nowhere in AMBER is this more
true than the GIBBS free energy module.

Here we discuss several issues which impinge on developing an appropriate GIBBS input
file, and on interpreting the results produced. One is also strongly encouraged to review the litera-
ture referenced here and in the preface to the GIBBS program.

7.8.1. What method should be used to calculate the free energy?
GIBBS offers five choices of method for calculating the free energy difference between two

states. These include the general classes slow growth, free energy perturbation, and thermody-
namic integration, as well as dynamically modified variants of the latter two. These were
described in the introduction to GIBBS. As yet, it has not been shown conclusively what method
is "best" for any particular type of problem.

(1) Slow growth: This method to some extent has had a bad reputation, since an implicit
assumption−thatλ changes slowly enough that the system can be assumed to be in equi-
librium at each step−does not strictly hold. The consequences of this "Hamiltonian lag"
have not been fully quantified. There is recent interest in converting the original algo-
rithms into "fast growth" techniques [92]; these approaches look very interesting but will
not be covered here.

(2) Window Growth: The equations of window growth, or Free Energy Perturbation (FEP)
are exact, and, in principal, if one has the computer resources to perform sufficient sam-
pling, one can obtain very accurate results. In practice, FEP suffers from two significant

2/28/02

GIBBS Page 189

difficulties. The first is that, in reality, we do not always sample to convergence. Unfortu-
nately, no reliable test to prove convergence has been developed. The second problem
with FEP is that Equation (2) requires that we obtain the ensemble average of a quantity
which relies of thedifferencebetween the potential functions representative of both states
λ (i) andλ (i + 1). But the average is evaluated from the ensemble of states visited when
MD is run using the potential function for stateλ (i). Thus, if statesλ (i) andλ (i + 1) are
too dissimilar, it will be very difficult to obtain reliable statistics. Reducing the spacing
between adjacentλ states helps circumvent this problem, but at a significant additional
cost. And even then we do not have any reliable methods for assuring the problem has
been avoided.

(3) Thermodynamic Integration (TI): TI is appealing because it avoids the problem in sam-
pling the exponential of V(λ (i + 1))-V(λ (i)) described for FEP above. But TI has its own
problem: The driving equation of TI is an integral (Equation 4), which in practice must be
calculated approximately by evaluating the integrand at discrete values ofλ . Of course,
TI is also susceptible to errors when a simulation is not run sufficiently long to obtain a
converged value of the averaged quantity which serves as the integrand.

Note that we approximate the integral using the trapezoidal algorithm, i.e.

(5)∆Gi = G(λ (i + 1)) + G(λ (i)) = (< ∂V/∂λ >λ (i+1) − < ∂V/∂λ >λ (i)) (λ (i + 1) − λ (i))/2 .

This integration method should be reasonably accurate in most cases. But in case the user
wishes to try their own integration scheme, setting ISANDE = 1 with TI will also force
reporting of the values of <∂V/∂λ >λ (i) and several other averages at every evaluation
point (the other values reported relate to calculating the enthalpy/entropy, as described
below).

(4) Dynamically Modified Windows (DMW): In dynamically modified windows [85] theδ λ
spacing between consecutive windows in FEP or TI is continually changing, to achieve a
relatively constant free energy change per window. This should improve the efficiency of
the calculation, by focusing proportionately more simulation time on those ranges ofλ
where the free energy is changing more rapidly. We hav e, in fact, shown that dynamically
modified windows significantly improve the sampling efficiency of FEP simulations for
model compounds. The biggest drawback to DMW is that, because we do not knowa
priori the exact shape of the free energy versusλ curve when we start a simulation, we
cannot predict with certainty how long the simulation will take to go to completion. This
caveat noted, it appears that DMW would be beneficial to most FEP and TI simulations.

7.8.2. Enthalpies and entropies
GIBBS allows the user to request that the enthalpy and entropy changes be reported in addi-

tion to the free energy (which is always reported). Two different schemes are used to calculate
these quantities, depending on the free energy calculation method. Note that in either case, the
enthalpy and entropy are necessarily dependent on being able to reliably extract small differences
between averages of (often large) total system energies. In the case of free energy, on the other
hand, we need only measure the average of a potential difference or a derivative. For this reason,
enthalpy/entropy estimates are typically more than an order of magnitude less accurate than their
free energy counterpart. One should be very cautious when interpreting them.

For FEP, the approximate equations given by Fleischman and Brooks [93] are used. These
approximate the required temperature derivatives by a finite difference. The equations used are

2/28/02

GIBBS Page 190

derived from the FEP expression, and the sum of the resulting (enthalpy - T*entropy) will equal
the reported free energy.

For TI, the enthalpy and entropy are evaluated using exact-form integral relationships given
by Yu and Karplus [94] (and in other places). The (enthalpy - T*entropy) calculated by this
method will not necessarily equal the reported total free energy; the difference between the two
quantities can be taken as a crude indication of the reliability of the enthalpy/entropy values. The
integrals are approximated by the trapezoidal rule, as described above (Equation (5)).

7.8.3. Mixing rules for vanishing atoms
By default, the optimal interactionr * ij between two atoms i and j is given by

(6)r * ij (λ) = r * i (λ) + r * j (λ)

This is fine when neither atom "vanishes" at eitherλ endpoint. But now consider the case where
atom i vanishes atλ =0. Then

(7)r * ij (0) = r * i (0) + r * j (0) = r * j (0) .

Thus,r * ij never gets smaller thanr * j (0). At λ =0, the mixed well depth,ε (0), will also be 0. But
at any value ofλ just slightly >0,ε≠0, and suddenly a steric "gap" between atoms i and j ofr * j

will be required. This can lead to sampling inefficiencies. A better solution is to shrinkr * ij (λ) to
a user-chosen small value as one of the atoms "vanishes". This is the effect of variable IDSX0
(line 10).

7.8.4. Using Dynamically Modified Windows
The theory of DMW, and some exploratory applications, are described elsewhere [85]. A

sample input for GIBBS is shown below, follow by a few important explanatory notes.

line

14 0 40.00000 0.00000 -0.02500 +2 0 100 100 0 0 0 0

14a 8 2 0 0.8000000 0.0100000

14b -10 20 0.0001000

14c 1.0D-5 1.D-10 1.0D-2 0.10000000 0 0 -1.00

(format compressed to fit page)

Line 14
We set ALMDEL = 0, ISLDYN=+2, IDIFRG=0, NSTMEQ=100, and NSTMUL=200. This results in
dynamically modified window FEP, with 100 steps of equilibration and 100 steps of data collection per
window.

Line 14a:
On the next line, we set IAVSLP = 8, IAVSLM=2, and CORRSL=0.8. This means that, at most, the 8
most recently calculated (λ , accumulated_free_energy) points will be used in approximating the
∂G/∂λ slope. IAVSLM=2 means that as soon as 2 points are available, we will calculate the slope from
all available points, until the maximum of 8 is reached. If the best-fit line through the points fits the
data with a correlation coefficient (CC) < 0.8, then the number of points used in the current slope
determination will be halved, the slope and CC will be recalculated, and the comparison against CC
will be performed again. A minimum of two points are always used to calculate the slope.

2/28/02

GIBBS Page 191

AMXMOV, which is set to 0.01 here, is the target change in free energy per window we are aiming for.
Theδ λ change on the next step is calculated as

(8)δ λ =
AMXMOV

(∂G/∂λ)

Note that since we don’t knowa priori what the free energy versusλ curve will look like, we do not
know exactly how many steps will be required to complete the simulation. The total number of MD
steps required will depend both on AMXMOV and on NSTMEQ and NSTMUL (line 14). NSTLIM
can be set to -1 on line 8 to force the program to continue until the total required number of steps have
been performed. Also note that the value of AMXMOV used will often depend on the magnitude of
the total anticipated free energy change. For example, one would not typically want to use AMX-
MOV=0.01 and NSTMEQ=NSTMUL=100 if the total energy change is 50 or 100 kcal/mole, as it can
be for certain electrostatic changes.

line 14b:
IAVDEL < 0, which means that the∆G forward − ∆Greversecomparisons will not be used in scaling the
widths ofλ windows. The viability and reliability of changes made using these types of comparisons
has not yet been established.

line 14c:
ALMDL0 is set to 1.0D-5. This means that the first IAVSLM window steps (before we have enough
points to calculate a slope) will be made with this small step size. This step is chosen to be small in
case the energy is changing quickly in this region.

DLMIN is set to 1.0D-10. Typically, a value of DLMIN such as this would have no effect, since it is
unlikely that the slope and AMXMOV would be such to require a step this small in the first place. At
any rate, steps calculated to be smaller than DLMIN are reset to DLMIN. DLMIN can be valuable in
some cases when one wishes to limit how slowly a simulation can progress.

DLMAX is set to 1.0D-2. Setting an appropriate value for DLMAX is important. If the G versusλ
curve has any points of inflection, we might calculate a slope of approximately 0 at one or more
points. In this case, the simple formula used to determine the next step size would indicate a very large
step (as large as 1.0, the whole simulation length). This would be incorrect, as the slope could clearly
turn significantly non-0 in a future range ofλ . DLMAX bounds the change in such cases.

AMXRST is set to 0.10. The slope we calculate is only an approximation of the "true" instantaneous
slope, and the current slope is only an estimate of the slope over the nextλ interval (window). Thus, it
is possible that when we calculate the actual free energy change over the next window, it will be an
unacceptable amount larger than the target value. In such a case, we may want to decrease theλ step
size for this window and re-evaluate the energy. AMXRST is the largest allowable energy for a step. If
the energy is > AMXRST, theδ λ stepsize is reduced, and the energy for the window recalculated.
Note that setting AMXRST too close to AMXMOV will result not only in too many windows being
reevaluated (inefficient), but can also lead to biased sampling.

ALMSTP(1) is set to -1.0. If 0 < ALMSTP(1) < 1.0, one can prescribe that the values of AMXMOV,
DLMIN, DLMAX and AMXRST vary over different ranges inλ , as described in the input discussion.

7.8.5. Potential of Mean Force (PMF) calculations
It is often of interest to determine the free energy difference between two states which differ in

conformation, rather than in composition. For example, one might be interested in the free energy pro-
file for rotation about a ring in a protein. Such a profile can be determined by performing a PMF simu-
lation. To perform such a simulation, one must be able to define conformation as a function of lambda

2/28/02

GIBBS Page 192

within the context of an otherwise free MD simulation. Fortunately, methods have been developed
which allow selected internal coordinates to be constrained to chosen values, while otherwise affecting
the MD trajectory only minimally. The best known of these is the SHAKE method for bond con-
straints. The methods of SHAKE can be extended to be generally applicable to angles and torsions.
One can calculate the free energy changes that accumulate as the internal constraints are translated
from those of the initial state to those of the final state. If one graphs the free energy changes as a func-
tion of the restraint target values (themselves a function ofλ), one gets the free energy profile for con-
formational changes.

Any constraint with a target value which is itself a function ofλ will contribute to the free energy
as lambda changes. This means that if SHAKE is used to constrain bonds of the perturbed group, and
any of those bonds "grow" or "shrink" during the simulation, there will be a corresponding contribu-
tion to the free energy. In earlier work, this contribution has been overlooked, but we have shown that
it must be included to reliably calculate free energies using the FEP method [86]. The contribution in
such a case can be calculated simply by setting NCORC=1.

Constraints other than SHAKE-en bonds can be defined by setting INTR > 0 (line 14) and pro-
viding the definitions after the standard input (see above). Any internal coordinate can be used; Be
aw are, however, that any internal coordinate which is part of a closed ring will present a special set of
(often tricky) considerations (see below). In typical use, no compositional (or topological) change is
performed when a PMF simulation is being carried out. A GIBBS-format topology file is still required
from LEaP, though. Here, one does not define any per-atom perturbations ("edit molecule" / Selection
/ Edit selected atoms to turn per-atom pert on/off) and does a

> saveamberparmpert molecule nullpert.top nullpert.crd

In general, PMF calculations within GIBBS may be performed with any method − FEP, TI or
slow growth. Note that there is one scenario whereonly the TI (with "constraint forces") method may
be used: when any constrained internals whose target values change with lambda lie within a closed
loop. The loop can either be part of the molecular topology,or as a result of the added topology of the
constraint(s). To understand why neither FEP nor TI with "potential forces" can be used in such a
case, you must recognize that for these latter methods, part of the procedure for calculating constraint
contributions requires that we determine which atoms of the system are affected by a rigid body trans-
lation/rotation about the constrained internals. But the requisite set of atoms is not unambiguously
defined when the constraint lies within a closed loop. Fortunately, the "constraint force" implementa-
tion of TI doesn’t require that we make such a determination.

It is important to note that PMF calculations are typically very compute-intensive. For FEP,
Gibbs will determine which non-bonded pairs have an interatomic distance which varies with one or
more constraints, and only these are re-evaluated in determiningVλ (i+1). This helps reduce the amount
of computer time required for a FEP simulation, although the total amount of time can remain high.
The additional cpu overhead for calculating constraint energies with TI is negligible in all cases.

While we have a good error check for some torsional PMF’s (the free energy values after rotating
360° should be the same), we typically have no reliable way of determining that for other simulations
enough sampling has carried out to determine a converged PMF curve. Our best guard against spurious
results is careful consideration of the specific problem and the inherent relaxation timescales of the
surroundings.

2/28/02

GIBBS Page 193

7.8.6. Error estimates and convergence
One of the thorniest issues related to free energy calculations is estimating the error in the

results. This error is often estimated in one of four ways:

(1) Two separate free energy simulations can be run, one withλ progressing from 0→1, the sec-
ond with λ progressing from 1→0. These two calculations should yield the same free energy
value, and the difference between them (the "hysteresis") gives a lower bound on the estimate
in the calculation. Errors derived in this way often underestimate the actual error.

(2) The difference between "forward" and "backward" values for a single run. As described in the
introduction, when FEP or slow growth is performed, double-wide sampling can be carried
out. This ultimately results in two pseudo-independent values for the free energy, one calcu-
lated from the sum of all theλ (i)→λ (i + 1) energies, and the other calculated from the sum of
all the λ (i)→λ (i − 1). If the results were exact, these values would be the same. In practice,
they will not be, and their difference gives a crude lower bound on the inherent error. Error
estimates derived in this manner tend to be even less reliable than those estimated using
method (1), and are usually worthless for slow growth type runs.

(3) Two or more simulations are run under equivalent but different conditions. For example, star-
ing with different randomly assigned sets of velocities. The difference between the free ener-
gies provide an estimate to inherent errors. These estimates are subject to the same problems
as (1) above.

(4) A series of simulations is run which differ in the respective amounts of sampling done. For
example, simulation 1 might use 100 steps of equilibration and 100 steps of data collection at
each window, while simulation 2 used 200 steps of each. If the value from the shorter simula-
tion was accurate, the value from the second simulation should be acceptably close to it. If it is
not, the simulation must be run even longer to confirm convergence. This method probably
provides the best insurance that convergence has been reached, but it is not definitive, and it is
also the most costly.

It must be understood that none of the above methods allows a completely reliable error estimate.
At best, they provide alower boundon the error. A large apparent error is a good indication that the
results obtained are not appropriately converged. But a low apparent error does not necessarily indi-
cate a converged and accurate simulation.

7.8.7. Changing parameters versus dual topologies
In "standard" operation, free energy changes in GIBBS are effected by transforming the potential

representative of state 1 to that representative of state 2. The topology of the system does not change.
To make atoms non-interacting at one of the endpoints, they are assigned zeroed non-bond and electro-
static parameters at this endpoint.

The extended mixing rules which can be used in GIBBS (IOLEPS = 0, line 10) allow a second
method to be used. One result of these new mixing rules is that if any pair of atoms "exist" only at
mutually exclusive endpoints (e.g. atom i exists in state 1 but not state 2; atom j exists in state 2, but
not in state 1), then effectively no non-bonded interactions are ever calculated between them. This
means that, in lieu of the "standard" method which uses a single topology, we can define dual topolo-
gies, one corresponding to theλ = 0 endpoint, and the other corresponding to theλ = 1 endpoint. For
the former topology, all non-bonded parameters would be defined to be 0 in theλ = 1 state. Similarly,
all non-bonded parameters for the latter topology would be 0 atλ = 0. The two topologies would then
never "see" each other at intermediate values ofλ . Defining dual topologies can aid in performing free
energy calculations where bond connectivities must change. Dual topologies is the method

2/28/02

GIBBS Page 194

incorporated into the "CHARMM" program.

On an efficiency basis, the relative merits of the two methods have not been established. Addi-
tional discussion of the two methods can be found elsewhere [86].

2/28/02

rdparm/ptraj Page 195

8. ptraj
The current version ofptraj (previously calledrdparm) is really two programs:

rdparm : a program to read, print (and modify) Amber prmtop files
usage: rdparm prmtop

ptraj : a program to process coordinates/trajectories
usage: ptraj prmtop script

Which code is used at runtime depends on the name of the executable (note that bothrdparm
andptraj are created by default from the same source code when the programs are compiled with
the supplied Makefile). If the executable name contains the string "rdparm", then therdparm func-
tionality is obtained.rdparm is semi-interactive (type? or help for a list of commands) and
requires specification of an Amber prmtop file (thisprmtop is specified as a filename typed on the
command line; note that if no filename is specified you will be prompted for a filename). For more
information aboutrdparm , see either the supplied HTML file "rdparm.html" or the section on
rdparm that follows the discussion of theptraj commands.

If the executable name does not contain the string "rdparm",ptraj is run instead.ptraj also
requires specification of parameter/topology information, however it currently supports both the
Amber prmtop format and (I know, sacrilege!) CHARMM psf files. Note that theptraj program
can also be accessed fromrdparm by typingptraj .

The commands toptraj can either be piped in through standard input or supplied in a file,
where the filename (script) is passed in as the second command line argument. Note that if theprmtop
filename is absent, the user will be prompted for a filename.

The code is written in ANSI compliant C and it fairly extensively documented and meant to be
extended by able users!. Along with this code is distributed public domain C code from the Computer
Graphics Lab at UCSF for reading and writing PDB files. Note that this program is updated more fre-
quently than the general Amber release and that new versions and documentation may be obtained
through links on the Amber WWW page.

Usage: ptraj prmtop script

ptraj is a program to process and analyze sets of 3-D coordinates read in from a series of input
coordinate files (in various formats as discussed below). For each coordinate set read in, a sequence of
ev ents orACTIONSis performed (in the order specified) on each of the configurations (set of coordi-
nates) read in. After processing all the configurations, a trajectory file and other supplementary data
can be optionally written out.

To use the program it is necessary to (1) read in a parameter/topology file, (2) set up a list of
input coordinate files, (3) optionally specify an output file and (4) specify a series of actions to be per-
formed on each coordinate set read in.

(1) reading in a parameter/topology file:
This is done at startup and currently either an Amber prmtop or CHARMM psf file can be read
in. The type of the file is autodetected. The information in these files is used to setup the global
STATE(ptrajState *) which gives information about the number of atoms, residues, atom names,
residue names, residue boundaries,etc. This information is used to guide the reading of input
coordinates which MUST match the order specified by the state, otherwise garbage may be

2/28/02

rdparm/ptraj Page 196

obtained (although this may be detected by the program for some file formats, leading to a warn-
ing to the user). In other words, when reading a pdb file, the atom order must correspond exactly
to that of the parameter/topology information; in the pdb the names/residues are ignored and only
the coordinates are read in based.

(2) set up a list of input coordinate files:
This is done with thetrajin command (described in more detail below) which specifies the
name of a coordinate file and optionally the start, stop and offset for reading coordinates. The
type of coordinate file is detected automatically and currently the following input coordinate
types are supported:

- Amber trajectory
- Amber restart (or inpcrd)
- PDB
- CHARMM (binary) trajectory
- Scripps "binpos" binary trajectory

(3) optionally specify an output trajectory file:
This is done with thetrajout command (discussed in more detail below). Trajectories can cur-
rently be written in Amber trajectory (default), Amber restrt, Scripps binpos, PDB or CHARMM
trajectory (in little or big endian binary format).

(4) specify a list of actions:
There are a variety of coordinate analysis/manipulationactionsprovided and each of these speci-
fied-- note that each action can be repeated-- is applied sequentially to the coordinates in the order
listed by the user in the input file.

As mentioned above, input toptraj is in the form of commands listed in a script (or if absent, from
text on standard input). An example input file toptraj follows:

trajin traj1.Z 1 20

trajin traj2.Z 1 100

trajin restrt.Z

trajout fixed.traj

rms first out rms @CA,C,N

center :1-20

image

strip :WAT

go

This reads in three files of coordinates (which can be compressed and the type is autodetected), a tra-
jectory file is output (by default to Amber trajectory format), rms fitting is performed to the first coor-
dinate frame using atoms names CA, C and N (storing the RMSd values to a file named "rms"), the
center of geometry of residues 1-20 is placed at the origin, the coordinates are imaged (which requires
periodic boundary conditions) to move coordinates outside the periodic box back in, and then the coor-
dinates of all the residues named "WAT" are deleted.

2/28/02

rdparm/ptraj Page 197

8.1. ptraj command prerequisites
Before going into the details of each of the commands, some prerequisites are necessary to

describe the command flow and the standard argument types. Effectively, all the commands are pro-
cessed from the input file in the order listed, except for the input/output commands. Input is the first
step and involves reading in all the coordinates sets from each file specified, in the order specified, a
single coordinate set at a time. For each coordinate set read in, all of the actions specified are applied
and then the potentially modified coordinates are output. Not all of the actions actually modify the
coordinates and some of the commands simply change the state (such assolvent which just changes
the definition of what the solvent molecules are). Some of the actions just accumulate data (such as
distances, angles and sugar puckers). Writing out of any accumulated data is deferred until all of the
coordinate sets have been read in. Some of the actions load up contiguous sets of coordinates into
main memory; with large coordinate sets this may require large amounts of memory. In these cases,
such as with the command2dRMS, it may be useful only to "save" the necessary coordinates by per-
forming astrip of unnecessary coordinates prior to the2dRMS call.

In the discussion that follows commands are listed inbold type. Words initalics are values that
need to be specified by the user, and words in standard text are keywords to specify an option (which
may or may not be followed by a value). In the specification of the commands, arguments in square
brackets ([] ’s) are optional and the "| " character represents "or". Arguments that are not in square
brackets are required. In general, if there is an error in processing a particular action, that action will
be ignored and the user warned (rather than terminating the program), so check the printed WARN-
ING’s carefully... In what follows is listed a few standard argument types:

mask: this is an atom or residue mask; it represents the list of active atoms. The current parser
recognizes a simplified midas style format for picking atoms and residues. The "@" character rep-
resents an atom selection and the ": " character represents a residue selection. Either the atom
and residue names or numbers can be specified. The "- " character represents a continuation. The
"˜ " represents "not" and in this naive implementation, if this character is specified anywhere in
the string, the "not" flag will be turned on. The "* " character is a wild card and will match all the
atoms if specified alone. When specified in atom or residue name specifications, sometimes it
will correctly work as a wildcard. The "?" character is also a wildcard, however only one charac-
ter is matched. Note that the current parser is not very sophisticated. Until this is "fixed", check
the output very carefully; note that whenever an atom mask is used, a summary of the atoms
selected is printed, so check this out...

filename: this refers to the full path to a file and note that no checking is done for existing files,
i.e. data will be overwritten if you attempt to write to an existing file.

8.2. ptraj input/output commands
trajin filename[start stop offset]

Load the trajectory file specified byfilenameusing only the frames starting withstart
(default 1) and ending with (and including)stop(default, the final configuration) using an
offset of offset (default 1) if specified. Amber trajectory, restrt/inpcrd, PDB, Scripps
BINPOS and CHARMM binary trajectory files are all currently supported and the type of
file is auto-detected (including the CHARMM binary file byte ordering). Compressed
files (filenames with an appended.Z or .gz are also recognized and treated

2/28/02

rdparm/ptraj Page 198

appropriately). Note that the coordinatesmustmatch the names/ordering of the parame-
ter/topology information previously read in.

referencefilename

Load up a the first coordinate set from the trajectory specified by the file namedfilename
and save this for use as a reference structure. Currently only therms command poten-
tially uses this reference structure. Note that as the state is modified (for example by
strip or closestwaters), the reference coordinates are also modified internally.

trajout filename[format] [nobox] [little | big] [dumpq | parse] [nowrap]

Specify the name of the file of output coordinates to write (filename) and the format (for-
mat). Currently supported formats are "trajectory" (or Amber trajectory, the default),
"restart" (Amber restart), "binpos" (Scripps binary format), "pdb" (PDB), or "charmm"
(CHARMM binary trajectory). With the CHARMM files, it is possible to specify the
byte ordering as "little" or "big" endian, with the default being that which the first
CHARMM trajectory file was read in as, or if none was read in, big endian. With the
PDB output, it is possible to include charges and radii in higher precision tempera-
ture/occupancy columns with the additional keyword "dumpq" (to dump Amber charges
and radii, assuming a Amber prmtop has been previously read in) or "parse" (to dump
charges and parse radii). By default (and differing from earlier versions ofptraj), atom
names are wrapped in the PDB file to put the 4th letter of the atom name first. If you
want to avoid this behavior, specify "nowrap"; the former is more consistent with stan-
dard PDB usage but departs from the format written in previous versions of this program.
Note that if more than one coordinate set is to be output, with the pdb and restrt/inpcrd
formats, extensions (based on the current configuration number) will be appended to the
filenames and therefore only one coordinate set will be written per file. The optional
keyword "nobox" will prevent box coordinates from being dumped to Amber trajectory
files; this is useful if one is stripping the solvent from a trajectory file and you don’t want
that pesky box information cluttering up the trajectory and messing with other pro-
grams... Note that if periodic box information is present in the CHARMM trajectory file,
when a new CHARMM trajectory file is written (in versions > 22) the symmetric box
information will be *very* slightly different due to numerical issues in the diagonaliza-
tion procedure; this will not effect analysis but shows up if diffing the binary files.

8.3. ptraj commands that modify the state
These commands change the state of the system, such as to delete atoms.

box [x value] [y value] [z value] [alphavalue] [betavalue] [gammavalue]
[fixx] [fixy] [fixz] [fixalpha] [fixbeta] +[fixgamma]

This command allows specification and optionally fixing of the periodic box (unit cell)
dimensions. This can be useful when reading PDB files that do not contain box informa-
tion. In the standard usage, without the "fixN" keywords, if the box information is not
already present in the input trajectory (such as the case with restart files or trajectory
files) this command can be used to set the default values that will be applied. If you want

2/28/02

rdparm/ptraj Page 199

to force a particular box size or shape, the "fixx", "fixy", etc commands can be used to
override any box information already present in the input coordinate files.

solvent[byres | bytype | byname]mask1[mask2] [mask3] ...

This command can be used to override the solvent information specified in the Amber
prmtop file or that which is set by default (based on residue name) upon reading a
CHARMM psf. Applying this command overwrites any previously set solvent defini-
tions. The solvent can be selected by residue with the "byres" modifier using all the
residues specified in the one or more atom masks listed. The byname option searches for
solvent by residue name (where the mask contains the name of the residue), searching
over all residues. The "bytype" option is intended for use in selecting solvents that span
multiple residues, however it is not yet implemented since I haven’t found a case where it
is necessary (and setting the solvent information in the code is a real nightmare).

As an example, say you want to select the solvent to be all residues from 20-100, then
you would do

solvent byres :20-100

Note that if you don’t know the final residue number of your system offhand, yet you do
know that the solvent spans all residues starting at residue 20 until the end of the system,
just chose an upper bound and the program will reset accordingly,i.e.

solvent byres :20-9999

To select all residues named "WAT" and "TIP3" and "ST2":

solvent byname WAT TIP3 ST2

Notethat if you just want to peruse what the current solvent information is (or more gen-
erally get some information about the current state), specifysolvent with no arguments
and a summary of the current state will be printed.

Other commands which also modify the state arestrip andclosestwaters. These com-
mands are described in the next section since they also modify the coordinates.

8.4. ptraj actioncommands
The following are commands that involve anactionperformed on each coordinate set as it is read

in. The commands are listed in alphabetical order. Note that in the script the commands are applied in
the order specified and some may change the overall state (more on this later). All of the actions can
be applied repeatedly. Note that in general (except where otherwise mentioned) imaging in non-
orthorhombic systems is now supported, however note that this code has not been extensively tested.

anglename mask1 mask2 mask3[out filename] [time interval]

Calculate the angle between the three atoms listed, each specified in a mask,mask1

2/28/02

rdparm/ptraj Page 200

throughmask3. If more than one atom is listed in each mask, then the center of mass of
the atoms in that mask is used at the position. The results are saved internally with the
namename(which must be unique) on thescalarStack for later processing (with the
analyzecommand). Data will be dumped to a file namedfilenameif "out" is specified
(with a time interval between configurations ofinterval if "time" is listed). All the angles
are stored in degrees.

atomicfluct [out filename] [mask] [startstart] [stopstop] [offset offset]
[byres | byatom | bymask] [bfactor]

Compute the atomic positional fluctuations for all the atoms; output is performed only for
the atoms inmask. If "byatom" is specified, dump the calculated fluctuations by atom
(default). If "byres" is specified, dump the average (mass-weighted) for each residue. If
"bymask" is specified, dump the average (mass-weighted) over all the atoms in the origi-
nal mask. If "out" is specified, the data will be dumped tofilename(otherwise the values
will be dumped to the standard output). The "start", "stop" and "offset" keywords can be
used to specify the range of coordinates processed (as a subset of all of those read in
across all input files, not to be confused with the individual specification in eachtrajin
command). If the keyword "bfactor" is specified, the data is output as B-factors rather
than atomic positional fluctuations (which simply means multiplying the results by
(8/3)pi**2).

So, to dump the mass-weighted B-factors for the protein backbone atoms, by residue:

atomicfluct out back.apf @C,CA,N byres bfactor

av eragefilename[mask] [startstart] [stopstop] [offset offset] [pdb [parse | dumpq]
[nowrap] | binpos | rest] [nobox] [stddev]

Compute the average structure over all the configurations read in (subject to start, stop
and offset if set) dumping the results to a file namedfilename. If the keyword "stddev" is
present, save the standard deviations (fluctuations) instead of the average coordinates.
Output is by default to an Amber trajectory, howev er can also be to a pdb, binpos or restrt
file (depending on the keyword chosen). The "nobox" keyword will suppress box coordi-
nates, and with the PDB format, it is possible to dump charges and radii (with the
"dumpq" keyword for Amber radii and charges or the "parse" for parse radii and Amber
charges) and prevent atom name wrapping "nowrap". The optionalmasktrims the output
coordinates (but does not change the state). This command does not alter the coordinates
as they are processed. If you want to alter the coordinates by averaging (for use by
actions further on), use therunningaveragecommand.

center [mask] [origin] [mass]

If we are in periodic boundary conditions, center all the atoms based on the center of
geometry of the atoms in themaskto the center of the periodic box or the origin if the
optional argument "origin" is specified. If the trajectory is not a periodic boundary trajec-
tory, then the molecule is implicitly centered to the origin. If nomask is specified,

2/28/02

rdparm/ptraj Page 201

centering is relative to all the atoms. If "mass" is specified, center with respect to the cen-
ter of mass instead.

checkoverlap[mask] [min value] [max value] [noimage]

Look for pair distances in the selected atoms (all by default) that are less than the speci-
fied minimum value (in angstroms, 0.95 by default) apart or greater than the maximum
value (if specified). This command is rather computationally demanding, particularly if
imaging is turned on (by default), but it is extremely useful for diagnosing problems in
input coordinates related to poor model building.

closesttotal mask[oxygen | first] [noimage]

Retain onlytotal solvent molecules (using the solvent information specified, seesolvent
above) in each coordinate set. The solvent molecules saved are those which are closest to
the atoms in themask. If "oxygen" or "first" are specified, only the distance to the first
atom in the solvent molecule (to each atom in the mask) is measured. This command is
rather time consuming since many distances need to be measured. Note that imaging is
implicitly performed on the distances and this gets extremely expensive in non-
orthorhomic systems due to the need to possibly check all the distances of the nearest
images (up to 26!). Imaging can be disabled by specifying the "noimage" keyword.

Note that the behavior of this command is slightly different than in previousptraj ver-
sions; now the solvent molecules are ordered at output such that the closest solvent is first
and the PDB file residue numbers no longer represent the identity of the water in the orig-
inal coordinate set. This command should now work with non-sequential solvent
molecules and be independent of where the water is located. Like thestrip command,
this modifies the current state (i.e. pars down the size of the trajectory which is useful in
cases where subsets of a trajectory may be loaded into memory). A restriction of this
command is that each of the solvent molecules must have the same number of atoms; this
leads to a fixed size "configuration" in each coordinate set output which is necessary for
most of the file formats and to avoid really complicating the code.

Of course, say you have two solvents of differing sizes and you want to perform closest to
each of these, this can be done sequentially. Say we have both ethanol ":ETH" and water
":WAT" present, and you want to save the closest 50 of each to residues :1-20

solvent byres :WAT

closestwater 50 :1-20 first

solvent byres :ETH

closestwater 50 :1-20 first

correlation name mask1 mask2 tmin tcorr tmaxoutfilename

This command will compute the correlation functions of an internuclear vector from the
center of mass of atoms inmask1to the center of mass of atoms inmask2based on three
parameters which must be specified:tmin, the first snapshot to be used;tcorr, the maxi-
mum snapshot for which correlation functions are to be computed; andtmax, the

2/28/02

rdparm/ptraj Page 202

maximum snapshot in the simulation to be used. Note thattmin, tcorrandtmaxare inte-
gers that correpond to snapshot numbers; users must know the actual separation between
frames to convert a "snapshot-number" to an actual time. The output will be stored in a
file namedfilenamefollowing the keyword out and can be directly sent to various plotting
programs. This command replaces the 3-step process of mdovrly, mdextract and
mdcorrp2 that was used in earlier versions of Amber.

dihedral name mask1 mask2 mask3 mask4[out filename]

Calculated the dihedral angle for the four atoms listed inmask1throughmask4(repre-
senting rotation about the bond frommask2to mask3). If more than one atom is listed in
each mask, treat the position of that atom as the center of mass of the atoms in the mask.
The results are saved internally with the namename(which must be unique) and the data
is stored on thescalarStack for later processing. Data will be dumped to a file if
"out" is specified (with afilenameappended). All the angles are listed in degrees.

diffusion mask time_per_frame[average] [filenameroot]

Compute a mean square displacement plot for the atoms in themask. The time between
frames in picoseconds is specified bytime_per_frame. If "av erage" is specified, then the
av erage mean square displacement is calculated and dumped (only). If "average" is not
specified, then the average and individual mean squared displacements are dumped. They
are all dumped to a file in the format appropriate for xmgr (dumped in multicolumn for-
mat if necessary, i.e. use xmgr -nxy). The units are displacements (in angstroms**2) vs
time (in ps). Thefilenamerootis used as the root of the filename to be dumped. The aver-
age mean square displacements are dumped to "filenameroot_r.xmgr", the x, y and z
mean square displacements to "filenameroot_x.xmgr", etc and the total distance travelled
to "filenameroot_a.xmgr".

This will fail if a coordinate moves more than 1/2 the box in a single step. Also, this
command implicitly unfolds the trajectory (in periodic boundary simulations) hence will
currently only work with orthorhombic unit cells.

dipole filename nx x_spacing ny y_spacing nz z_spacing mask1origin | box [maxmax_percent]

Same asgrid (see below) except that dipoles of the solvent molecules are binned. Dump-
ing is to a grid in a format for Chris Bayly’s discern delegate program that comes with
Midas/Plus.

distancename mask1 mask2[out filename] [noimage]

This command will calculate a distance between the center of mass of the atoms inmask1
to the center of mass of the atoms inmask2and store this information into an array with
name as the identifier (a name which must be unique and which is placed on the
scalarStack for later processing) for each frame in the trajectory. If the optional
keyword "out" is specified, then the data is dumped to a file namedfilename. The dis-
tance is implicitly imaged (for both orthorhombic and non-orthorhomic unit cells) and the
shortest imaged distance will be saved (unless the "noimage" keyword is specified which

2/28/02

rdparm/ptraj Page 203

disables imaging).

grid filename nx x_spacing ny y_spacing nz z_spacing mask1[origin | box] [negative] [maxfraction]

Create a grid representing the histogram of atoms inmask1on the 3D grid that is "nx *
x_spacingby ny * y_spacingby nz * z_spacingangstroms (cubed). Either "origin" or
"box" can be specified and this states whether the grid is centered on the origin or half
box. Note that to provide any meaningful representation of the density, the solute of inter-
est (about which the atomic densities are binned) should be rms fit, centered and imaged
prior to thegrid call. If the optional keyword "negative" is also specified, then these den-
sity will be stored as negative numbers. Output is in the format of a XPLOR formatted
contour file (which can be visualized by the density delegate to Midas/Plus or other pro-
grams). Upon dumping the file, pseudo-pdb HETATM records are also dumped to stan-
dard out which have the most probable grid entries (those that are 80% of the maximum
by default which can be changed with the max keyword, i.e. max .5 makes the dumping
at 50% of the maximum).

Note that as currently implemented, since the XPLOR grids are integer based, the grid is
offset from the origin (towards the negative size) by half the grid spacing.

image[origin] [center]mask[bymol | byres | byatom | bymask]mask
[triclinic | familiar [commask]]

Under periodic boundary conditions, which particular unit cell a given molecule is in
does not matter as long as, as a whole, all the molecules "image" into a single unit cell.
In an MD simulation, molecules drift over time and may span multiple periodic cells
unless "imaging" is enabled to shift molecules that leave back into the primary unit cell.
In sander, the IWRAP variable controls this, with IWRAP=1 implying turning on imag-
ing. This command,image allows post-processing of the imaging to force all the
molecules into the primary unit cell.

If the optional argument "origin" is specified, then imaging will occur to the coordinate
origin (like in SPASMS) rather than the center of the box (as is the Amber standard). By
default all atoms are imagedby moleculebased on the position of the first atom (or the
center of mass of the molecule if "center" is specified; the latter is recommended). If the
maskis specified, only the atoms in themaskwill be imaged. It is now possible to image
by atom (byatom), by residue (byres), by molecule (bymol, default) or by atom mask
(where all the atoms in the mask are treated as belonging to a single molecule). The
behavior of the "by molecule" imaging is different in CHARMM and Amber; with
Amber the molecules are specified directly by the periodic box information whereas with
the CHARMM parameter/topology, each segid is treated as a different molecule. With
this newer implementation of the imaging code, it is possible to avoid breaking up double
stranded DNA during imaging,i.e.:

image :1-20 bymask :1-20

image byres :WAT

[Of course this assumes that the coordinates of the two strands were not displaced during

2/28/02

rdparm/ptraj Page 204

the dynamics as well!] Imaging only makes sense if there is periodic box information
present.

Non-orthorhomic unit cells are now supported! Use of the triclinic imaging can be forced
with the "triclinic" keyword. Note that this puts the box into the triclinic shape, not the
more familiar, more spherical shapes one might expect for some of the unit cells (i.e.
truncated octahedron). To get into the more familiar shape, specify the "familiar"
keyword. In this case, to specify atoms that imaged molecules should be closest to, spec-
ify a center of the atoms in the mask specified with the "com" keyword. Note that imag-
ing "familiar" is time consuming (but recommmended) since each of the possible imaged
distances (27) are checked to see which is closest to the center.

principal mask

Principal axis align the atoms specified inmask. This is more or less functional as there
are issues with degenerate eigenvalues and swapping, however it basically works...

pucker name mask1 mask2 mask3 mask4 mask5[out filename] [amplitude]
[altona | cremer] [offsetoffset]

Calculate the pucker for the five atoms specified in each of the mask’s,mask1through
mask5, associatingname(which must be unique) with the calculated values. If more than
one atom is specified in a given mask, the center of mass of all the atoms in that mask is
used to define the position. If the "out" keyword is specified the data is dumped tofile-
name. If the keyword "amplitude" is present, the amplitudes are saved rather than the
pseudorotation values. If the keyword "altona" is listed, use the Altona & Sundarlingam
conventions/algorithm (for nucleic acids) (the default) [see Altona & Sundaralingam,
<i>JACS</i> 94, 8205-8212 (1972) or Harvey & Prabhakaran, <i>JACS</i> 108,
6128-6136 (1986).] In this convention, both the pseudorotation phase and amplitude are
in degrees.

If "cremer" is specified, use the Cremer & Pople conventions/algorithm [see Cremer &
Pople, <i>JACS</i> 97:6, 1354-1358 (1975).]

Note that to calculate nucleic acid puckers, specify C1’ first, followed by C2’, C3’, C4’
and finally O4’. Also note that the Cremer & Pople convention is offset from the Altona
& Sundarlingam convention (with nucleic acids) by 90.0; to add in an extra 90.0 to "cre-
mer" (offset -90.0) or subtract 90.0 from the "Altona" (offset 90.0) specify anoffsetwith
the offset keyword; this value is subtracted from the calculated psueodorotation value (or
amplitude).

radial root-filename spacing maximum solvent-mask[solute-mask] [closest] [densityvalue] [noimage]

Compute radial distribution functions and store the results into files withroot-filenameas
the root of the filename. Three files are currently produced, "root-filename_carnal.xmgr"
(which corresponds to a carnal style RDF), "root-filename_standard.xmgr" (which uses
the more traditional RDF with a density input by the user) and "root-filename_vol-
ume.xmgr" (which uses the more traditional RDF and the average volume of the system).

2/28/02

rdparm/ptraj Page 205

The total number of bins for the histogram is determined by the spacing between bins
(spacing) and the range which runs from zero tomaximum. If only a solvent-maskis
listed (i.e. a list of atoms) then the RDF will be calculated for the interaction of every
solute-mask atom with ALL the other solute-mask atoms.

If the optionalsolute-maskis specified, then the RDF will represent the interaction of
each solute-mask atom with ALL of the solvent-mask atoms. If the optional keyword
"closest" is specified, then the histogram will bin, over all the solvent-mask atoms, the
distance of the closest atom in the solute mask. If thesolute-maskand solvent-mask
atoms are not mutually exclusive, zero distances will be binned (although this should not
break the code). If the optional keyword "density", followed by the densityvalueis speci-
fied, this will be used in the calculations. The default value is 0.033456
molecules/angstrom**3 which corresponds to a density of water equal to 1.0 g/mL. To
convert a standard density in g/mL, multiply the density by "6.022 / (10 * weight)" where
"weight" is the mass of the molecule in atomic mass units. This will only effect the "root-
filename_standard.xmgr" file.

Note that although imaging of distances is performed (to find the shortest imaged dis-
tance unless the "noimage" keyword is specified), minimum image conventions are
applied.

rms mode[mass] [out filename] [time interval] mask[namename] [nofit]

This will RMS fit all the atoms in themaskbased on the currentmodewhich is:

previous: fit to previous frame
first : fit to the "start" frame of the first trajectory specified.
reference: fit to a the reference structure (which must have been previously read in)

If the keyword "mass" is specified, then a mass-weighted RMSd will be performed. If the
keyword "out" is specified (followed immediately by afilename), the RMSd values will
be dumped to a file. If you want to specify an time interval between frames (used only
when dumping the RMSd vs time), this can be done with the "time" keyword. To sav e
the calculated values for later processing, associate a name with the "name" keyword
(where the chosenname must be unique and the data will be stored on the
scalarStack for later processing. If the keyword "nofit" is specified, then the coordi-
nates are not modified, just the RMSd values are calculated (and stored or output if the
name or out keywords were specified).

strip mask Strip all atoms matching the atoms inmask. This changes the state of the system such
that all commands (actions) following the strip (including output of the coordinates which
is done last) are performed on the stripped coordinates (i.e. if you strip all the waters and
then on a later action try to do something with the waters, you will have trouble since the
waters are gone). A benefit of stripping, beyong paring down trajectories is with the data
intensive commands that read entire sections of the trajectory into memory; with the strip
to retain only selected atoms, it is much less likely that you will blow memory.

2/28/02

rdparm/ptraj Page 206

translate mask[x x-value] [y y-value] [z z-value]

Move the coordinates for the atoms in themaskin each direction by the offset(s) speci-
fied.

truncoct mask distance[prmtopfilename]

Create a truncated octahedron box with solvent stripped to a distancedistanceaw ay from
the atoms in themask. Coordinates are output to the trajectory specified with thetrajout
command.Note that this is a special commandand will only really make sense if a sin-
gle coordinate set is processed (i.e. any prmtop written out will only correspond to the
first configuration!) and commands after thetruncoct will have undefined behavior since
the state will not be consistent with the modified coordinates. It is intended only as an aid
for creating truncated octahedron restrt files for running in Amber.

The "prmtop" keyword can be used to specify the writing of a new prmtop (to a file
namedfilename; this prmtop is only consistent with the first set of coordinates written.
Moreover, this command will only work with Amber prmtop files and assumes an Amber
prmtop file has previously been read in (rather than a CHARMM PSF). This command
also assumes that all the solvent is located contiguously at the end of the file and that the
solvent information has previously been set (see thesolventcommand).

vector name mask{principal [x | y | z] | dipole |mask2| box} [out filename]

This command will keep track of a vector value (and it’s origin) over the trajectory; the
data can be referenced for later use based on thename(which must be unique among the
vector specifications). If the optional keyword "out" is specified, the data will be dumped
to the file namedfilename. The format is frame number, followed by the value of the vec-
tor, the reference point, and the reference point plus the vector. What kind of vector is
stored depends on the keyword chosen.

principal [x | y | z]: store one of the principal axis vectors determined by diagonalization
of the intertia matrix from the coordinates of the atoms specified by themask. If none of
x | y | z are specified, then the principal axis (i.e. the eigenvector associated with the
largest eigenvalue) is stored. The eigenvector with the largest eigenvalue is "x" (i.e. the
hardest axis to rotate around) and the eigenvector with the smallest eigenvalue is "z" and
if one of x | y | z are specified, that eigenvector will be dumped. The reference point for
the vector is the center of mass of themaskatoms.

dipole: store the dipole and center of mass of the atoms specified in themask. The vector
is not normalized, nor converted to appropriate units, nor is the value likely defined if the
atoms in the mask are not overall charge neutral.

mask2: store the vector between the center of mass of the atoms inmaskwith the center
of mass of the atoms in the additional mask (mask2). The center of mass of the first mask
is the reference point.

box: store the box coordinates of the trajectory. The reference point is the origin or (0.0,

2/28/02

rdparm/ptraj Page 207

0.0, 0.0).

watershellmask filename[lower lowerupperupper] [solvent-mask] [noimage]

This option will count the number of waters within a certain distance of the atoms in the
maskin order to represent the first and second solvation shells. The output is a file into
filename(appropriate for xmgr) which has, on each line, the frame number, number of
waters in the first shell and number of waters in the second shell. Iflower is specified,
this represents the distance from themaskwhich represents the first solvation shell; if this
is absent 3.4 angstroms is assumed. Likewise,upper represents the range of the second
solvation shell and if absent is assumed to be 5.0 angstroms. The optionalsolvent-mask
can be used to consider other atoms as the solvent; the default is ":WAT". Imaging on the
distances is done implicitly unless the "noimage" keyword has been specified.

8.5. hydrogen bonding facility
ptraj now contains a generic facility for keeping track of lists of pair interactions (subject to a

distance and angle cutoff) useful for calculation hydrogen bonding or other interactions. It is designed
to be able to track the interactions between a list of hydrogen bond "donors" and hydrogen bond
"acceptors" that the user specifies.

donor resname atomname| maskmask| clear | print

This command sets the list of hydrogen bond donors. It can be specified repeatedly to
add to the list of potential donors. The usage is either as a pair of residue and atom
names or as a specified atom mask. The former usage,

donor ADE N7

would set all atoms named N7 in residues named ADE to be potential donors.

donor mask :10@N7

would set the atom named N7 in residue 10 to be a potential donor.

The keyword "clear" will clear the list of donors specified so far and the keyword "print"
will print the list of donors set so far.

The acceptor command is similar except that both the heavy atom and the hydrogen atom
are specified. If the same atom is specified twice (as might be the case to probe ion inter-
actions) then no angle is calculated between the donor and acceptor.

acceptorresname atomname atomnameH| maskmask maskH| clear | print

The donor andacceptor commands do not actually keep track of distances but instead
simply set of the list of potential interactions. To actually keep track of the distances, the
hbond command needs to be specified:

2/28/02

rdparm/ptraj Page 208

hbond [distancevalue] [anglevalue] [solventneighborvalue]
[solventdonordonor-spec] [solventacceptoracceptor-spec]
[nosort] [timevalue] [print value] [seriesname]

The optional "distance" keyword specifies the cutoff distance for the pair interations and
the optional "angle" keyword specifies the angle cutoff for the hydrogen bond. The
default is no angle cutoff and a distance of 3.5 angstroms. To keep track of potential
hydrogen bond interactions where we don’t carewhichmolecule of a given type is inter-
action as long as one is (such as with water), the "solvent" keywords can be specified. An
example would be keeping track of water or ions interacting with a particular donor or
acceptor. The maximum number of possible interactions per a given donor or acceptor is
specified with the "solventneighbor" keyword. The list of potential "solvent"
donors/acceptors is specified with the solventdonor and solventacceptor keywords (with a
format the same as the donor/acceptor keywords above).

As an example, if we want to keep track of water interactions with our list of
donors/acceptors:

hbond distance 3.5 angle 120.0 solventneighbor 6 solventdonor WAT O

solventacceptor WAT O H1 solventacceptor WAT O H2

If you wanted to keep track of interactions with Na+ ions (assuming the atom name was
Na+ and residue name was also Na+):

hbond distance 3.5 angle 0.0 solventneighbor 6 solventdonor Na+ Na+

solventacceptor Na+ Na+ Na+

To print out information related to the time series, such as maximum occupancy and life-
times, specify the "series" keyword.

8.6. rdparm

rdparm requires an Amber prmtop file for operation and is menu driven. Rudimentary online help is
available with the "?" command. Here is a sample run:

rdparm prmtop

Opened file prmtop with mode (r)

Read in residue labels...

C5 C A A C G T T G G3

...

CIO CIO CIO CIO CIO CIO CIO CIO CIO CIO

CIO CIO CIO CIO CIO CIO CIO CIO WAT WAT

WAT WAT WAT WAT WAT WAT WAT WAT WAT WAT

...

WAT

Scanning Box

Successfully completed readParm.

2/28/02

rdparm/ptraj Page 209

MAIN MENU. Please enter commands. Use "?" or "help"

for more info. "exit" or "quit" to leave program...

MAIN MENU: ?

The following commands are currently available:

help, ?

atoms, printAtoms

bonds, printBonds

angles, printAngles

dihedrals, printDihedrals

pertbonds, perturbedBonds

pertangles, perturbedAngles

pertdihedrals, perturbedDihedrals

printExluded

printLennardJones

printTypes

parmInfo

checkcoords

ddrive <filename>

delete <bond || angle || dihedral> <number>

delperturbed <bond || angle || dihedral> <number>

restrain <bond || angle || dihedral>

openparm <filename>

writeparm <filename>

system <string>

mardi2sander <constraint file>

analyze <Amber trajectory || Amber coordinates>

rms <Amber trajectory>

stripwater

transform <Amber trajectory>

translateBox <Amber coords>

modifyBoxInfo

modifyMolInfo

quit, exit

To create an executable, a Makefile is provided. This code was developed on SGI machines and
has been tested on DEC Alpha and HPUX platforms. The code is broken up into numerous C files,
each of which intends to be fairly independent. The main header file, "ptraj.h" includes all of the other
header files, so each file need only include this local header file and other necessary global headers
(such as <stdio.h>, <math.h>, etc). In order to hide function prototyping from each individual routine,
for a given file, such as rdparm, a local define #define RDPARM_MODULE is defined which hides the
prototype. See the header files for more information.

A basic summary of the code is as follows:

interface.c --- code defining the basic user interface. Note that

2/28/02

rdparm/ptraj Page 210

much of the underlying functionality is implemented

in dispatch.c

utility.c --- defines error routines, safe memory

allocation, etc.

rdparm.c --- defines much of the functionality for reading and

processing Amber topologies/parameters. User

access to many of these routines is accessed

indirectly through the ptraj interface with the

command rdparm or directly if the executable is

named rdparm.

ptraj.c --- the main code for trajectory processing.

actions.c --- the code implementing the ptraj "actions"

dispatch.c --- defines the token lookup, and string stack processing,

and handles the conversion from strings typed by the

user to subroutines run.

io.c --- input/output routines, file handing. Note:

coordinate/trajectory IO is in trajectory.c

trajectory.c --- special input/output routines for

trajectories/coordinates

rms.c --- code to calculate root-mean-squared

deviations between conformations.

display.c --- code for printing 2D RMS plots

torsion.c --- code for calculating torsions

experimental.c --- new stuff

pdb/<files> --- code to read/write PDB files from the Computer Graphics

lab at UCSF

main.c --- this main routine

? Print the help file. If an argument is given, help is printed for this command.

angles <mask>
Print all the angles in the file. If the <mask> is present, only print angles involving these
atoms. For example, atoms :CYT@C? will print all angles involving atoms which have
2-letter names beginning with "C" from "CYT" residues.

atoms <mask>
Print all the atoms in the file. If the <mask> is present, only print these atoms.

bonds <mask>
Print all the bonds in the file. If the <mask> is present, only print bonds involving these
atoms.

checkcoords <Amber trajectory>
Perform a rudimentary check of the coordinates from the filename specified. This is to

2/28/02

rdparm/ptraj Page 211

look for obvious problems (such as overflow) and to count the number of frames.

dihedrals <mask>
Print all the dihedrals in the file. If the <mask> is present, only print dihedrals involving
one of these atoms.

ddrive <filename>
Create an input file for the SPASMS dihedral driver.

delete <bond || angle || dihedral> <number>
This command will delete a given bond, angle or dihedral angle based on the number
specified from the current prmtop. The number specified should match that shown by the
corresponding print command. Note that a new prmtop file is not actually saved. To do
this, use the writeparm command. For example, "delete bond 5" will delete with 5th
bond from the parameter/topology file.

delperturbed <bond || angle || dihedral> <number>
Same as delete above but to delete perturbed bonds, angles or dihedrals.

restrain <bond || angle || dihedral>
This is a means to add restraints as is possible with the "parm" program. Its usage is
somewhat obsolete because more flexible restraints can be specified with the NMR func-
tionality of sander. To use this command, specify whether the restraint is to a bond, angle
or dihedral and the program will prompt for atom numbers (as specified in the "atom" or
"printatom" command). As before, the prmtop is not actually saved until a "writeparm"
command is issued.

openparm <filename>
Open up the prmtop file specified.

writeparm <filename>
Write a new prmtop file to "filename" based on the current (and perhaps modified)
parameter/topology file.

system <string>
Execute the command "string" on the system.

mardi2sander <constraint file>
A rudimentary conversion of Mardigras style restraints to sander NMR restraint format.

rms <Amber trajectory>
Create a 2D RMSd plot in postscript or PlotMTV format using the trajectory specified.
The user will be prompted for information. This command is rather slow and should be
integrated into the "ptraj" code, however it hasn’t been yet.

2/28/02

rdparm/ptraj Page 212

stripwater This command will remove oradd three point waters to a prmtop file that already has
water. The user will be prompted for information. This is useful to take an existing prm-
top and create another with a different amount of water. Of course, corresponding coor-
dinates will also have to be built and this is not done by "rdparm". To do this, ideally
construct a PDB file and convert to Amber coordinate format using "ptraj".

ptraj <script-file>
This command reads a file or from standard input a series of commands to perform pro-
cessing of trajectory files. See the supplemental documention.

transform <Amber trajectory>
Perform rudimentary trajectory processing; this command is obsolete.

translateBox <Amber coords>
Translate the coordinates (only if they contain periodic box information) specified to
place either at the origin (SPASMS format) or at half the box (Amber format).

modifyBoxInfo
This is a command to modify the box information, such as to change the box size. The
changes are not saved until a writeparm command is issued.

modifyMolInfo
This command checks the molecule info (present with periodic box coordinates are speci-
fied) and points out problems if they exist. In particular, this is useful to overcome the
deficiency in edit which places all the "add" waters into a single molecule.

parmInfo Print out information about the current prmtop file.

pertbonds, perturbedBonds
Print out the perturbed bonds.

pertangles, perturbedAngles
Print out the perturbed angles.

pertdihedrals, perturbedDihedrals
Print out the perturbed dihedrals.

printAngles Same as "angles".

printAtoms Same as "atoms".

printBonds Same as "bonds".

printDihedrals
Same as "dihedrals".

2/28/02

rdparm/ptraj Page 213

printExluded Print the excluded atom list.

printLennardJones
Print out the Lennard-Jones parameters.

printTypes Print out the atom types.

quit Quit the program.

2/28/02

CARNAL Page 214

9. Carnal

Usage:

carnal [-O] < analin > analout

carnal [-O] -i analin -o analout -p parm

−O Overwrite output files.

CARNAL is a coordinate analysis program that uses a flexible command language. In addition to con-
ventional trajectory measurements, it allows comparisons between multiple streams of coordinates. It
has many of the capabilities of ANAL and MDANAL, which it was intended to eventually replace. It
also provides set-theoretic group specification, cartesian vector oriented measurements, hbond analy-
sis, output of distributions (including radial), selection of coordinate sets from streams, interpretations
of md streams in terms of windows, and format conversion.

| |

| Stage 1 Stage 2 |

| (CARNAL) (You supply) |

| |

| ___________ stream(s) tables, |

| | Dynamics |----->| ___________ coords |

| ----------- |--------->| static & | |

| |- - - - ->| dynamic |---------> numerical |

| ______________ | - - - - ->| analysis | analysis |

| | Minimization|-->| /----------- & display |

| -------------- / ˆ |

| / | |

| parm file(s)/ | |

| commands |

| (analin) |

|__|

9.1. Introduction
CARNAL input is essentially a programming language that lets one specify variables and perform
operations on them. The control input file for CARNAL is referred to asanalin. The commands in
this file name the other input and output files as well as the measurements to be performed. These
commands are described in detail in the syntax specification and examples below. The −o file or stan-
dard output contains carnal’s interpretation of the analin input and summary data for the run.

Note that periodic boundary conditions are only applied to DISTRIBUTION DIST measurements.
This is because CARNAL allows measurements across multiple coordinate sets, but could be enabled
in the normal case of measuring within a single set.

2/28/02

CARNAL Page 215

9.1.1. Input
CARNAL takes as input one or more "streams" of input coordinates, which are lists of restart, mdcrd,
or Amber pdb format files. It detects formats transparently. The formats can be mixed in a stream, but
the files must have the same number of atoms in the same order defined by the parm file for that
stream. Each stream may have a different parm file. The −p argument or the first parm file defined in
analin is used as the default parm file if no parm file is specified for a stream. At least one stream must
be specified; the first one is used as the default when a stream reference is expected. CARNAL will
also load static coordinate sets for comparison with the individual sets in the streams. NOTE: periodic
boundary conditions are only applied to DISTRIBUTION DIST measurements; this is because of diffi-
culties in measuring across 2 streams, but could (and at some point will) be enabled in the normal case
of measuring within a stream. Compressed input files ending in .Z or .gz are uncompressed transpar-
ently, allowing disk space to be saved (the disk version remains compressed).

9.1.2. Output
CARNAL writes as output tables of measurements (scalar measurements or 0/1 hydrogen bond occu-
pancies), distributions (including radial) and coordinate sets in mdcrd, restrt or pdb format. Summary
data is also written to the file named with the −o argument on the command line, or standard output if
no −o argument is given.

9.2. Analin introduction
This introduction is intended to give the feel of the analin language via an overview of the syntax and a
simple example. A complete syntax definition and more complex examples are given below.

9.2.1. Summary of Analin Sections
These are the required sections in the analin input file syntax. Comments follow ’!’s. In actual analin
files, a ’#’ at the beginning of a line turns it into a comment. There are 4 main sections, each begun by
a keyword in this order:

FILES_IN ! name parm, coord/restrt/pdb files

FILES_OUT ! name output tables, coord/restrt/pdb dumps

DECLARE ! describe items to be measured

OUTPUT ! direct declared stuff to output files

END ! end input, start execution: STOP may be

! substituted for debugging: program stops

Things are declared in the first 3 sections and referenced in the last 2 sections. When something is
declared it is given an id for referencing it later.

9.2.2. A Simple Analin Example
Select some coord sets from mdcrd files and output them in pdb format:

FILES_IN

PARM p1 ketop; ! keyword, id, filename

STREAM s1 kecrd kfcrd; ! keyword, id, 2 filenames

2/28/02

CARNAL Page 216

FILES_OUT

COORD c1 /tmp/ke.p PDB; ! keyword, id, filename, output format

DECLARE

! no declarations for this simple case

OUTPUT

COORD c1 s1 SELECT (1 3 5 200);

! keyword, files_out id, files_in id:

! command to select sets 1, 3, 5, 200

END

In this case, coord sets 1, 3, 5, and 200 from the concatenated stream of mdcoord files kecrd and kfcrd
will be output to pdb files /tmp/ke.p.1 /tmp/ke.p.3 /tmp/ke.p.5 /tmp/ke.p.200.

9.3. Analin Syntax Specification

Notes

Aspects to be changed are indicated by ’CHANGE:’. Definitions must precede references: you cannot
refer to something defined later in the file. Characters reserved for explicit purposes are:

- . % () & | , ! ?

A ’#’ as the first character of a line makes the line a comment. The format is entirely free, i.e. state-
ments can be spread across multiple lines with any indentation and with comment lines embedded.
Lines may not exceed 80 characters − re-read the preceding sentence if you think that causes a prob-
lem. In the syntax below, items in [] brackets are optional and items within {} braces are descriptions
rather than token-by-token matchings.

---FIRST SECTION = "FILES_IN"

Input coordinates may be MD crd dump, inpcrd/restrt or Amber output pdb format.

FILES_IN

PARM id filename;
Amber Parm file. Multiple parms can be defined; the 1st one (or one defined
by the [-p parm] argument) becomes the default for STREAMs that don’t
specify a parm.

STREAM strid [parmid]
[NOBOX] [ATOM n] [WIN x y] file1 file2 ... ;

At least 1 STREAM must be specified. STREAM files are read sequentially
at each step. If > 1 STREAMs are named, they can be compared at each step.
If no parmid is given, the first one defined is used by default. The NOBOX
and ATOM options allow CARNAL to handle certain discrepancies between
the parm topology and the input stream. If these options are inaccurate, syn-
chronization may be lost, resulting in garbage. ATOM is for reading in a
stream that hasfewer atoms that the prmtop- such a stream might have been

2/28/02

CARNAL Page 217

created earlier using the ATOM option in the COORD section. All coordi-
nate sets in a stream must have the same number of atoms.

NOBOX
Mdcrd files for periodic simulations have box coordinates after each
coordinate set. Carnal automatically detects the presence of periodic
conditions from the parm topology and allows for reading the box coor-
dinates in mdcrd. However, minimization restrt files (as well as constant
volume mdcrd files previous to 4.1) do not include the box coordinates.
The NOBOX option allows carnal to read min.rst and old constant vol-
ume mdcrd files correctly.

AT OM n
Read only n atoms (more may be defined in the parm file). I.e. coordi-
nates for only n atoms are in the stream. Implies NOBOX,i.e. if a box is
specified in prmtop, it is ignored.

WIN
Means, "skip x sets, use y sets" repeatedly. This is for analysis of peri-
odic equilibration / data collection runs such as gibbs.

STATIC statid [parmid]
[NOBOX] [ATOM n] file1 file2 ... ;

STATIC files are read at the beginning and remain in memory for comparison
with STREAM coordinates. Each static set in an id can be referenced by
’id%1’, ’id%2’ etc. See STREAM above for "NOBOX" and "ATOM n"
descriptions.

---SECOND SECTION = "FILES_OUT"

FILES_OUT

TABLE tabid filename ;
In the tables, there is one "logical row" per coordinate set measured, so a
given measurement over a trajectory occupies a column. For example, the Nth
item directed to the table (in the OUTPUT section, below) would form the
Nth numerical column and the Ith measurement of that value would be in the
Ith logical row. The logical rows are wrapped so that a row continues through
a series of lines in a single file beginning with keys of columns by grepping
for the key letter. If there is demand, rows can instead be spread across multi-
ple files (filename.0 filename.1 ...) or just tabbed continuously within a file
(harder to read visually). Thus, the format is:

L0 m1 m2 m3 m4 ... |

L1 m11 m12 m13 m14 ... | 1st coord set

L2 m21 m22 |

L0 m1 m2 m3 m4 ... |

L1 m11 m12 m13 m14 ... | 2nd coord set

L2 m21 m22 |

2/28/02

CARNAL Page 218

where the measurements are m1, m2, ... m22 extending over a logical line
consisting of lines ’L0’, ’L1’, and ’L2’.

COORD crdid file [APPEND] [BLANK] [format] ;
APPEND

Add to end of named file if it exists.
BLANK

Write a blank line after each set.

Format symbols are ’PDB’ ’RST’ and ’CRD’. The default format is CRD.

HBOND hbid base_file [TABLE] [LIST];
TABLE

Output table of occupancies in base_file.tab. This table has two sections.
The first part is a key that lists the possible hbonds in order. The format
is:

1 (ADE 2 O5’)--(HB 1 H) .. (ADE 2 O1’)

2 (ADE 2 O5’)--(HB 1 H) .. (ADE 2 N7)

The second part consists of a matrix of 0’s and 1’s. Each column is for a
given hbond pair according to the numbering in the key section, and
each row (line) is for a coordinate set. The format is ’0’ if no hbond is
happening, ’1’ if it is. The Unix ’awk’ utility can be used to extract col-
umn(s) of interest for further occupancy analysis or plotting, e.g. "egrep
-v ’ˆ#’ | awk ’{print $2, $5, $8}’ base_file.tab" where the ’egrep’ com-
mand strips out the key section and the ’awk’ command selects the
columns of interest. Note that if there are too many columns for awk to
handle, the ’perl’ utility may be needed.

LIST
Output list of per-hbond-per-set to base_file.lis for extensive analysis.
The format is:

1 (ADE 2 N6)(THY 5 O4) 2.930768 9.125721

2 (ADE 2 N6)(THY 5 O4) 2.957820 3.151730

where the 1st number is the number of the coordinate set (starting with
1), followed by donor, acceptor, distance and angle (in radians). Atoms
are specified by residue name, residue number, and atom name. (See
OUTPUT HBOND STAT for summary hbond info, including fraction of
occupancy.)

HBOND specifications are given in the OUTPUT section.
Summary info is printed to standard output.
CHANGE someday: at least one of {TABLE, LIST} must be given, and the
OUTPUT HBOND statement is req’d to do any hbond analysis.

2/28/02

CARNAL Page 219

DISTRIBUTION dbid filename [DAP][MIN];
DAP

Put number of intervals on 1st line.
MIN

For DIST option, below. For each ’solvent’ atom, write out min distance
to ’solute’ for the run (multiple lists separated by a ’%’ are output if
WIN is chosen with DIST). This is to figure out which waters to keep in
a second pass dumping COORDs. List output goes to filename.min.

The definition of contents of the file is described in the OUTPUT section.

---THIRD SECTION = "DECLARE"

Each object is bound to a crd set; if not bound explicitly, the default is stream 0. Refer-
ences to that object inherit the binding of the object, except for within a GROUP state-
ment (GROUP (GROUP id)...). I.e. in general an optional [crdset] is not allowed after a
declared id is used (binding at reference rather than creation), for now.

"Points" can be atoms (specified by "number [crdset]" or "atom_name residue_number
[crdset]") or centers of geometry or mass of groups of atoms (see GROUP definition
below). For example, "PLANE id 12 34 58;" specifies the plane formed by atoms 12,
34 and 58 in the default stream, and "PLANE id OD1 2 ND1 4 OD1 6;" specifies the
plane formed by atom name OD1 in residue 2, etc. "PLANE id gid1 gid2 gid3;" speci-
fies the plane formed by the centers of geometry of three groups.

DECLARE

----Group is defined by set theoretic operations. Group attributes include center of
geometry or mass, moment of inertia, and radius of gyration.

GROUP id [crdset] (((set OP set) OP set) ...) ;
The group is defined on the default stream unless [crdset] is given. The nest-
ing in parentheses determines the order of evaluation.

OP can be either ’&’ or ’|’
where ’&’ = intersection, ’|’ = union

and set can be any one of: { (ATOM numlist),
(ATOM [NAME|TYPE] namelist),
(RES numlist),
(RES NAME namelist),
(SOLUTE)
(GROUP namelist_of_groupids),
!set }

In the (GROUP) set, the groups are OR’d together. The NAME and TYPE
options allow the use of ’?’ as a wild card matching any single character.

Allowing expressions:

groupid%center
center of geometry - default if groupid is used as a point

groupid%cmass
center of mass

2/28/02

CARNAL Page 220

groupid%momin
moment of inertia

groupid%radgyr
radius of gyration

For example, groupid%radgyr could be included in an OUTPUT / TABLE list (see below) and
thus form a column of a table.

CUTRES id x y z cut;
CUTRES id groupid cut;

CUTRES produces a list in AMBER GROUP format (Appendix B) of all
residues with any atom withincut of the given center point, or if agroupid is
given, withincut of the group, including the residues in the group itself. It is
intended primarily for analyzing a single coordinate set to generate a group of
atoms within an area of interest that will be allowed to move in a belly
dynamics or perturbation simulation.

AXIS id {2 points} ;
AXIS axid1 1 2 ;

Atoms 1 -> 2 in stream 0 by default.
AXIS axid1 1 st1id 2 st2id ;

Atom 1 in stream/static st1 -> atom 2 in stream/static st2.
AXIS axid2 grp1id grp2id%cmass;

grp1 center of geometry to grp2 center of mass: note that the groupids
may be the same or groups may be defined on different streams.

PLANE plid { 3 points or 2 axes } ;
A plane is treated as its normal vector where appropriate.

ANGLE angid { 3 points or 2 axes/planes };
Planes are interpreted as normal vectors.

TORSION tid { 4 points or 3 axes/planes };
Planes are interpreted as normal vectors. Note that in the averages printed to
standard output, carnal section).

TORSION tid BACKBONE [residue1 [residue2]] [crdset] ;
Find all torsions involving backbone bonds (between Amber main chain
atoms), starting with residue1 (default: 1st residue) and ending with residue2
(default: last residue). If first and last residues’ terminal backbone atoms are
bonded to each other, torsions involving them are included.

DIST dsid { 2 of: points, axes, planes };
Select 2 points, 2 axes, or point and axis or plane. [planes and axes are not
supported yet]

IMAGE imageid groupid ;
IMAGE imageid groupid%cmass ;

Only for periodic systems. Place the system so that groupid (center of geom-
etry or center of mass) is at the center of the box, and image all residues
accordingly. Cleans up Ewald runs. Uses groupid’s stream. Imageid can be
used as a streamid in measurements. NOTE: this is not guaranteed to give the
desired, intact system on the first try − it depends on the transformations that
Ewald has made and the size of the box. For example, the center of geometry
of a DNA duplex could be in the center of the box, but the strands could be
on the edges. Successive transformations using trial and error may be

2/28/02

CARNAL Page 221

required to restore an Ewald trajectory to normal appearance, and different
transformations may be required for different frames. Also, intact molecules
can be broken up by this option if centering makes some residues project out
of the box (possibly an indication that the box size used was too small).

RMS rmsid [FIT] groupid ;
RMS rmsid [FIT] groupid streamid ;
RMS rmsid [FIT] groupid streamid refcrdid ;
RMS rmsid [FIT] groupid staticid [ATOM] [RES];
RMS rmsid groupid2 prevrmsid ;

Using atoms in groupid, measure rms of one coordinate set to another. If FIT
is selected, the current coordinate set is first positioned for minimum mass-
weighted rms of the group on the reference coordinates; this also allows the
rmsid to be used to determine the resulting (non-fitted) RMS measurement on
other groups (as in the prevrmsid case above), and the FITted rmsid can be
used like a stream for other measurements, as well as output via a COORD
statement. Per-residue and per-atom RMS values within the group can be out-
put in a TABLE by rmsid%residues or rmsid%atoms.

The first and simplest case above uses groupid to compare the default stream
to its first set. The second case compares a named stream (rather than the
default) to its first set. The third case specifies both the stream and a refer-
ence set for comparison; this reference set could be a static (single) set or
another stream (comparing successive sets in each stream).

The fourth example, using a STATIC id, produces a (triangular) matrix of
RMS values, one for each pair of coordinate sets in the STATIC id. The
AT OM and RES options additionally cause per-atom and per-residue RMS to
be reported. All output is calculated and printed immediately, since it does
not depend on reading a serial stream. The matrix format for a 3-coordinate-
set STATIC would be:

---RMS MATRIX

set0 set1 value0

set0 set2 value1

set1 set2 value2

NOTE: use of FIT with this option leaves all coordinate sets in the STATIC
set with the group center of mass placed at the origin and each successive
coordinate set rotated to fit its predecessor.

The final case measures the rms of a second group on a pair of sets that were
positioned by a previous RMS FIT statement. See OUTPUT TABLE for
instructions on obtaining per-residue and per-atom rms for streams. Any
number of any of these types of RMS measurements can be used.

2/28/02

CARNAL Page 222

DME dmeid groupid ;
DME dmeid groupid streamid ;
DME dmeid groupid streamid refcrdid ;
DME dmeid groupid staticid;

Using atoms in groupid, measure Distance Matrix Error between one coordi-
nate set and another. DME compares intra-group distances in one conforma-
tion to those in another conformation.

DME = sqrt(2/(N * (N − 1)) * Σ
atom pairs

(distance− refdistance))

In proteins, the convention is to use DME for groups defined on C-alpha
atoms. The first and simplest case above uses groupid to compare the default
stream to its first set. The second case compares a named stream (rather than
the default) to its first set. The third case specifies both the stream and a ref-
erence set for comparison; this reference set could be a static set or another
stream. The final example produces a (triangular) matrix of DME values, one
for each pair of coordinate sets in the STATIC id. The format for a 3-coordi-
nate-set STATIC would be:

---DME MATRIX

set0 set1 value0

set0 set2 value1

set1 set2 value2

PUCKER pukid NUCLEIC [streamid] [residue_names|residue_numbers] ;
PUCKER pukid number_of_points points ;

Measure pucker using algorithm of D. Cremer and J. A. Pople (JACS 96:6 pp
1354-1358, 1975). For the NUCLEIC options, the Altona and Sundaraling-
ham convention (JACS 94 pp 8205-8212, 1972 or p. 20 of Saenger’s "Princi-
ples of Nucleic Acid Structure", Springer-Verlag, 1983) is approximated by
adding 90 degrees to the phase angle, the puckers are always ordered accord-
ing to residue order in the parm file, and the standard atom names (O4’/O1’,
C1’, C2’, C3’, C4’) are used to determine the points. (For a comparison of
different nucleic acid pucker conventions, see S. C. Harvey and M. Prab-
hakaran, JACS 108:20, pp 6128-6136, 1986.) In the general case (specifying
points explicitly), a ring of N points can be parameterized by N-3 alternating
amplitudes and phase angles. Note that the Cremer/Pople algorithm finds a
mean plane based on the assumption that successive points in the ring have
the same angle between them with respect to the center of geometry, so for
kinky rings this may not work. Note that in the averages for angles printed to
standard output, carnal section).

PUCKER pukid NUCLEIC;
Measure pucker of all standard residues (’94 force field: G5,
G, G3, GN,etc.; ’91 force field: GUA,etc.) in default stream
using standard atom names (O4’/O1’, C1’, C2’, C3’, C4’).

PUCKER pukid NUCLEIC streamid;
Same as above, but uses specific stream rather than default.

2/28/02

CARNAL Page 223

PUCKER pukid NUCLEIC GUA;
Measure pucker of all residues named ’GUA’ using standard
atom names.

PUCKER pukid NUCLEIC 2,4,6,8 ;
Measure pucker of residues 2,4,6, and 8 using standard atom
names.

PUCKER pukid 5 O1’ 2 C1’ 2 C2’ 2 C3’ 2 C4’ 2 ;
Measure pucker of 5 points: O1’ (residue 2), C1’ (residue 2),
etc.

---FOURTH SECTION = "OUTPUT"

OUTPUT

TABLE tbid { column_list } ;
At least one column must be specified. Columns are printed in their order in
the list. Column_list may include ids, classes of measurement (e.g. DIST)
which print in the order declared, MEAS which prints all scalar measure-
ments, or ALL which prints everything. AXIS ids result in vectors, PLANE
ids in normals, and GROUP ids default to center of geometry unless attributes
are specified, such as grpid%cmass and grpid%radgyr. RMS ids default to the
rms of the group, while rmsid%residues and rmsid%atoms give per-residue
and per-atom rms respectively. For per-residue rms, the group must not have
any partially-included residues. If either per-residue or per-atom options are
used, the statistics are printed in the summary with the residue and atom
names.

COORD crdid streamid
[SELECT (-i j k,l m-p q-)] [MOD h]
[AVERAGE] [ATOM n] [EXH2O m [GROUP gid]] [INH2O gid] ;

SELECT (-5 7 8,10 100-105 200-)
Select certain sets from the stream by order. Numbers are separated by
spaces or commas, and ’-’ is used to indicate ranges. In this example,
select sets 1 through 5, then sets 7, 8, and 10, then sets 100 through 105,
then sets 200 through the end. Note that this option selects files for out-
put only, and does not affect measurements on the stream, as opposed to
the STREAM WIN option, which pre-selects sets for all the other com-
mands.

MOD h
Select every h’th set from the stream. Note that this option selects files
for output only, and does not affect measurements on the stream, as
opposed to the STREAM WIN option, which pre-selects sets for all the
other commands.

AVERAGE
Av erage the coordinates. Not compatible with EXH2O or INH2O, but ok
with ATOM. Produces a single set, so PDB or RST format is advised for
the corresponding FILES_OUT COORD declaration. Suggested that this
be applied to an RMS FIT streamid so that the area of interest has

2/28/02

CARNAL Page 224

minimal distortion from drift or pressure scaling of the box. Note: The
av eraged coordinates may be a chemically unrealistic hybrid of different
regions of phase space, so visual inspection, energy analysis, and per-
haps energy minimization may be in order, depending on the purpose.
As a simple example, the methane C-H bond length shortens due to H
rotation. Note 2: a measurement on averaged coordinates is not the
same as the average of the same measurement over the same trajectory.

AT OM n
Output only the first n atoms. AT OM, GROUP, INH2O and EXH2O are
mutually exclusive options.

GROUP id
Output only atoms in the group. AT OM, GROUP, INH2O and EXH2O
are mutually exclusive options.

EXH2O m [GROUP gid]
Omit all but m waters from the set, retaining either those closest to the
non-waters, or those closest to the atoms specified by GROUP. Distance
is measured from water oxygen. Waters are printed in order of closeness
to the solute, i.e. the order varies from set to set, so identity-based
dynamic graphics smoothing schemes will fail. ATOM, GROUP,
INH2O and EXH2O are mutually exclusive options.

INH2O gid
Omit all waters from the set except those with atom type OW in group
gid, where gid contains only OWs. This group is intended to be built
with the output of a previous pass using DISTRIBUTION MIN which
informs the user how close each water came to the area of interest during
the run. See example below. ATOM, GROUP, INH2O and EXH2O are
mutually exclusive options.

HBOND hbid [DONOR [EXACT] g1] [ACCEPTOR [EXACT] g2]
[DISTANCE x] [ANGLE y] [STATS];

DONOR and ACCEPTOR indicate group ids for searching for the appropri-
ate atoms (note: donor is the heavy atom to which the hydrogen is attached).
The default for either is all atoms. A single group id may be given in place of
separate definitions. If DONOR and/or ACCEPTOR are specified, the
EXACT option forces carnal to use all heavy atoms that may apply, instead of
just the ’classic’ ones such as oxygen and nitrogen.
DISTANCE

Cutoff distance in angstroms between the heavy atoms: default is 4.0.
ANGLE

Cutoff H-donor-acceptor angle in degrees (0 is linear): default 1 radian
˜= 60 degrees.

STATS
Directs printing of per-hbond summaries to standard output. The format
is:

HBOND h1 stats:

19 (ADE 2 N6)_(ADE 2 HN6A)..(THY 5 O4) % 64.400000

distance avg: 2.909575 max 2.961379 min 0.000000

angle(deg) avg: 7.241544 max 15.219878 min 0.000000

2/28/02

CARNAL Page 225

where the # refers to the column of file.tab and the ’64.400000’ gives the
percentage of occupancy. The other statistics are only for the "occupied"
states. The distance is between donor and acceptor atoms.

DISTRIBUTION dsid
{ RAW | min max nboxes [WIN nsets] }
{ measid | DIST group1 [group2 [ALL]] [NORM] } ;

Distribution output can be either RAW (a long line of ascii floating point
numbers per coordinate set) or binned and normalized. If the latter, the WIN-
dow option causes the distribution for each nsets supplied by the STREAM to
be written, with a ’%’ line to separate each window.

RAW is the recommended option for large data sets, since the proper range
and number of bins are hard to guess at: the rdis program can be used on the
raw output to quickly try various min/max/nboxes numbers on the raw file.
Note, however, that measurements including many terms can generate files
larger than the original trajectory, so the RAW option may not be appropriate
in such cases. For example, when measuring O-O distributions in a system of
N waters, there are 9N numbers per coordinate set, but N(N-1)/2 distances to
write out if RAW is used. For N=1000 this amounts to a RAW file 55 times
larger than the trajectory.

Either an id for a scalar measurement or a radial distance distribution (DIST)
may be specified. In the latter case, one or two groups can be specified. A
single group may be given, in which case all intra-group distances are used
(this would be appropriate for e.g. water O-O); otherwise, two groups are
required. When just two groups are given (without the ALL option), the
groups are treated as "solute" and "solvent" respectively: for each "solvent"
atom, the distance to the closest "solute" atom is applied. The ALL option
includes all group1-group2 distances rather than the "solvent" to closest
"solute" atom. Note that when two groups overlap, distances of 0 would be
obtained for the atoms that are in both groups, so groups should be disjunct.
The MIN option from the FILES_OUT section above is only valid for the
plain, two-group mode.

Volumetric NORMalization is optional when radial DISTribution is selected.
This only makes sense for measuring the distribution around a single atom or
a set of chemically identical atoms, since the normalization is done by divid-
ing the count for each interval by the volume of a spherical shell having radii
equal to the shell boundaries. (To normalize the distribution around a func-
tional group, for example, would require calculating the volumes of the non-
spherical shells around the group.)

The output format is: "bin_center value smoothed_value integral," where
bin_center is the center of the interval of the bin (the first is min + 0.5 *
(max-min)/nboxes), the value is the distribution for that bin, and the integral
is the cumulative sum at the current bin. The integral is not affected by the
NORM option.

2/28/02

CARNAL Page 226

9.4. Examples

9.4.1. Simple coordinate averaging

#Simple Coordinate Averaging

FILES_IN

PARM p1 ketop; ! keyword, id, filename

STREAM s1 kecrd kfcrd; ! keyword, id, 2 filenames

FILES_OUT

COORD c1 /tmp/ke.p PDB; ! keyword, id, filename, output format

DECLARE

! no declarations for this simple case

OUTPUT

COORD c1 s1 AVERAGE;

! keyword, files_out id, files_in id:

! command to average sets

END

9.4.2. Simple distance, angle, and torsion measurements

Plain measurements involving points (atoms, centers of mass)

FILES_IN

PARM p1 prm.top;

STREAM s1 a1.trj a2.trj a3.trj;

FILES_OUT

TABLE tab1 meas.tab;

DECLARE

#

First, some measurements using atoms only: format is:

FUNC_NAME ID atom_specs ;

each atom_spec can be either:

ATNAME RESNUM

or

ATNUM

#

DIST dist1 O1’ 2 O1’ 7;

ANGLE ang1 2 12 13;

TORSION tor1 C1 4 C2 4 C3 4 C4 4;

#

A special case for torsions:

#

TORSION tor2 BACKBONE;

ˆ find all torsions consisting completely of

main chain atoms

#

Now some more geometrical stuff: the angle between

the normal vectors of two planes:

#

2/28/02

CARNAL Page 227

PLANE pla1 C1 4 C2 4 C3 4;

PLANE pla2 C1 5 C2 5 C3 5;

ANGLE ang2 pla1 pla2;

#

Now some measurements using composite points:

format is the same, except for atom_specs.

First we’ll define a group consisting of the non-waters,

and a group consisting of atoms in 3 numerically adjacent

residues:

#

GROUP g1 (SOLUTE);

GROUP g2 (RES 5,6,7);

#

And now to measure the distance between the centers of

mass of each group to see how that pair of residues

fluctuates from the center:

#

DIST dist2 g1%cmass g2%cmass ;

#

Now let’s define 2 more residue-based groups:

#

GROUP g3 (RES 21,22,23);

GROUP g4 (RES 44,45,46);

#

And we’ll measure the angular fluctuations of the 3

residue-based centers of mass:

ANGLE ang3 g2%cmass g3%cmass g4%cmass ;

OUTPUT

Now direct all the measurements to the table defined above

MEAS refers to all scalar measurements; each 1 will be a

column in the order defined (dist1 ang1 tor1 tor2 dist2 ang2).

Alternatively, the ids could be given explicitly in any order.

#

TABLE tab1 MEAS;

END

9.4.3. RMS deviation
You want a measurement of the minimum RMS deviation of a group of atoms as a measure

of how disordered some structures are relative to another structure. Given the best fit on that
group of atoms, you also want to know how much another subgroup differs and how much all the
atoms outside the fit group differ. You also want to save the fit structures for viewing.

#

RMS example: fit central 8 bases of a G4 DNA quadruplex

#

FILES_IN

PARM p1 p524.top;

2/28/02

CARNAL Page 228

STREAM s1

sm4.pdb

sm9.pdb

sm17.pdb;

STATIC ref_set sm3.rst;

ˆˆˆˆˆˆˆ this file will be used as one

reference set for the comparison;

no pdb file around, but that’s ok

FILES_OUT

TABLE tbl sm.rms;

ˆˆˆˆˆˆ this is a table for the per-set rms values

COORD crd fit.p PDB;

ˆˆˆ save some structure(s) in PDB format

ˆˆˆˆˆ name of file

DECLARE

#

Now let’s get down to business.

Declare a group of atoms to fit on - all the

non-sugars in the central 8 GUAs:

#

GROUP grp1 ((ATOM NAME N9 C8 H8 N7 C5 C6 O6 N1 H1

C2 N2 HN2A HN2B N3 C4)

& (RES 4,6, 13,15, 22,24, 31,33));

ˆ boolean for "all of the atom names in

the 1st part that occur in the following

residue numbers"

#

RMS fit the structures in the stream to the reference

set using the group of atoms just defined (fitting is

mass-weighted). This creates a new thing that can be

treated as a stream.

#

RMS fit1 FIT grp1 s1 ref_set;

ˆˆˆˆˆˆˆ reference structure id -

if not given, the first

structure in the stream

would be used; or this id

could be for a different

stream instead of the static

coord set used here

ˆˆ stream id - what to fit

ˆˆˆ group of atoms to use for fitting

ˆˆˆ fit (position) the stream set to minimize rms

ˆˆˆ ’fit1’ is the new, streamlike thing

#

Specify the group of atoms to measure a secondary

deviation - the terminal bases on each strand, w/out

the sugars:

#

2/28/02

CARNAL Page 229

GROUP g2 ((RES 2,8, 11,17, 20,26, 29,35) &

(ATOM NAME N9 C8 H8 N7 C5 C6 O6 N1 H1

C2 N2 HN2A HN2B N3 C4));

#

Measure the RMS on that group resulting from the fit

of the other bases, i.e. between the target structure

and the new, fitted structure. Just measuring this

time, not creating a new set.

#

RMS fit2 g2 fit1 ref_set;

#

Let’s see what that fit does for _all_ the atoms outside

of the fit, not just the end bases.

Specify the group of all atoms not in the original group

used for the fitting:

#

GROUP g3 (!grp1);

#

Measure the RMS of that group on the fitted structures

as before.

#

RMS fit3 g3 fit1 ref_set;

#

Just for fun, create a new fitted set using the 1st group

but using the 1st set in the stream as reference.

#

RMS fit4 FIT grp1 s1;

ˆˆ just specifying the stream with no

reference defaults the reference to

the 1st set in the stream

ˆˆˆˆ use our "central bases" group again

ˆˆˆ FIT the thing

ˆˆˆˆ name of a new, stream-like thing starting with the

second crd set in the stream

#

OUTPUT

#

Write the RMS values to the table:

#

TABLE tbl fit1 fit2 fit3 fit4;

ˆˆˆˆ ˆˆˆˆ ˆˆˆˆ ˆˆˆˆ output the measured rms

values as columns in the

table declared as a file

above

ˆˆˆ to table ’tbl’

#

Average the the structures fitted using the 1st group

on the reference set and print them to the coordinate

file defined above. Perhaps we will then energy min

2/28/02

CARNAL Page 230

this structure and claim it means something.

#

COORD c1 fit1 AVERAGE;

#

END

9.4.4. Coordinate selection: waters
You want coordinate dump of solute with selected waters. Not the closest waters at each

step: youknow_exactlywhich waters you want: the same ones in every set, maybe so that when
you smooth the trajectory, the Nth water won’t change its identity at each step. This is a 2-pass
procedure: first you need to get a list of the waters: you need the atom number of the OW (atom
type) in each water. If you want those waters to be all those that came within a given distance of
the solute, have I got an option for you. The thing to have is, for each water, the closest it came to
whatever you want to call the solute. DISTRIBUTION MIN will give you a list of atom number,
distance pairs that you can sort to generate the list of favored waters you need. With this list of
OW atom numbers, you can define a group which, in another pass, can be used to filter waters.

use of INH2O with DISTRIBUTION MIN - 1st pass

FILES_IN

PARM p1 prm.top;

STREAM s1 a1.trj a2.trj a3.trj;

FILES_OUT

DISTRIBUTION d1 file MIN;

ˆthis is the key: creates "file.min"

DECLARE

GROUP g1 (SOLUTE);

GROUP g2 (ATOM TYPE OW);

ˆˆ have to use OW

OUTPUT

DISTRIBUTION d1 0.0 10.0 10 DIST g1 g2;

ˆˆˆˆˆˆˆˆˆˆˆ you’ll also get the

net curve; RAW ok

ˆˆˆˆ this is the 2nd key

ˆˆˆˆ order is solute then

solvent

END

--Now the critical step: filtering the water. First we use ’awk’ to see what waters we want to keep,
e.g.:

awk ’$2 < 3.0 {print $1}’ file.min | wc -l

This tells you how many water oxygens came within the cutoff (3.0 in this example). Choose a
cutoff such that the resulting list of type OW atoms is the right size for you and:

awk ’$2 < 3.0 {print $1}’ file.min > temp

Now you need to take the list of OWs in the temp file and include it in a GROUP ATOM

2/28/02

CARNAL Page 231

statement as in the following example in order to select the waters into a coordinate dump.

use of INH2O with DISTRIBUTION MIN - 2nd pass

FILES_IN

PARM p1 prm.top;

STREAM s1 a1.trj a2.trj a3.trj;

FILES_OUT

COORD c1 filtered.trj;

DECLARE

GROUP g1 (ATOM 2,11,26,29);

ˆˆˆˆˆˆˆˆˆˆ the type OW atom numbers of your choice

OUTPUT

COORD c1 INH2O g1;

END

9.4.5. Radial distance distributions

DISTRIBUTION EXAMPLE: ONE GROUP to itself (OW-OW)

FILES_IN

PARM p1 prmtop;

STREAM s1 crd;

FILES_OUT

DISTRIBUTION d1 xdb ;

DECLARE

GROUP g1 (ATOM TYPE OW);

OUTPUT

DISTRIBUTION d1 RAW DIST g1 ;

ˆ group id from DECLARE GROUP

ˆ distance macro

ˆ dump all distances to file for use w/ rdis

program (i.e. don’t bin measurements or

output bins)

ˆ id

For each ’solvent’ group atom, the nearest ’solute’ atom

is found and binned if it satisfies the min, max criterion.

END

DISTRIBUTION EXAMPLE: TWO GROUPS using closest atom in 1st to

each of 2nd

FILES_IN

PARM p1 prmtop;

STREAM s1 crd;

FILES_OUT

DISTRIBUTION d1 xdb ;

DECLARE

GROUP g1 (RES NAME ADE);

GROUP g2 (RES NAME THY);

2/28/02

CARNAL Page 232

OUTPUT

DISTRIBUTION d1 RAW DIST g1 g2 ;

ˆ 2nd group is the ’solvent’

ˆ 1st group is the ’solute’

ˆ distance macro

ˆ dump all distances to file (don’t bin)

ˆ id

For each ’solvent’ group atom, the nearest ’solute’ atom

is found and binned if it satisfies the min, max criterion.

END

DISTRIBUTION EXAMPLE: TWO GROUPS using all inter-group pairs

FILES_IN

PARM p1 prmtop;

STREAM s1 crd;

FILES_OUT

DISTRIBUTION d1 xdb ;

DECLARE

GROUP g1 (RES NAME ADE);

GROUP g2 (RES NAME THY);

OUTPUT

DISTRIBUTION d1 RAW DIST g1 g2 ALL;

ˆ consider all group1-group2

interactions

ˆ 2nd group id from DECLARE GROUP

ˆ 1st group id from DECLARE GROUP

ˆ distance macro

ˆ dump all distances to file (don’t bin)

ˆ id

END

9.4.6. Hbond examples
You want a occupancies for all possible hbonds at each step. This file will consist of a line

for each coordinate set in the stream with a ’0’ or ’1’ followed by a space for each possible
hbond. You also want the percentage occupancy of each hbond over the run, and the average dis-
tance and angle when occupied. And while you’re at it, you want to print the distance and angle
of each possible hbond.

You also want to specify the maximum distance and angle that qualify an hbond. The per-
centages and averages are written to the main output at the end of the run.

FILES_IN

PARM p1 hbtop;

STREAM s1 hbmd;

FILES_OUT

HBOND h1 xhb TABLE LIST;

ˆ write a list of distances/angles

to "xhb.lis"

ˆ write occupancies to "xhb.tab"

2/28/02

CARNAL Page 233

ˆ use "xhb" as the basis for filenames

#

#

DECLARE

OUTPUT

HBOND h1 DISTANCE 3.3 ANGLE 20.0 STATS;

ˆ print the averages

of the occupied cases

ˆ limit the angle;

default 1 radian ˜= 60 degrees

ˆ limit the distance between heavy atoms;

default 4 Angstroms

END

Perhaps you want to specify the donor and acceptor groups, if only to limit the number of
columns in the table. This time, we’ll also just use the default criteria for hbonds.

HBOND ANALYSIS EXAMPLE: USING GROUPS FOR DONOR/ACCEPTOR

FILES_IN

PARM p1 hbtop;

STREAM s1 hbmd;

FILES_OUT

HBOND h1 xhb TABLE LIST;

DECLARE

DECLARE

GROUP g1 (ATOM TYPE N2 NA);

GROUP g2 (ATOM TYPE NC O);

OUTPUT

HBOND h1 DONOR g1 ACCEPTOR g2 STATS;

END

2/28/02

MM_PBSA Page 234

10. MM-PBSA
The MM_PBSA approach represents the postprocessing method to evaluate free energies of

binding or to calculate absolute free energies of molecules in solution. The sets of structures are
usually collected with molecular dynamics or Monte Carlo methods. However, the collections of
structures should be stored in the format of an AMBER trajectory file. The MM_PBSA/GBSA
method combines the molecular mechanical energies with the continuum solvent approaches.
The molecular mechanical energies are determined with thesanderprogram from AMBER and
represent the internal energy (bond, angle and dihedral), and van der Waals and electrostatic inter-
actions. An infinite cutoff for all interactions is used. The electrostatic contribution to the solva-
tion free energy is calculated with the Poisson-Boltzmann (PB) method, for example, as imple-
mented in/DelPhi program [95], or by generalized Born (GB) methods implemented insander.
The hydrophobic contribution to the solvation free energy is determined with solvent-accessible-
surface-area- dependent term [48]. The surface area is computed with Paul Beroza’smolsurfpro-
gram, which based on analytical ideas primarily developed by Mike Connolly [96]. Estimates of
conformational entropies can be made with thenmodemodule from AMBER.

Although the basic ideas here have many precedents, the first application of this model in its
present form was to the A- and B-forms of RNA and DNA, where many details of the basic
method are given [97]. You may also wish to refer to a review summarizing many of the initial
applications of this model [98], as well as to papers describing more recent applications [99-103].

The initial MM_PBSA scripts were written by Irina Massova. These were later modified
and mostly turned into Perl scripts by Holger Gohlke, who also added GB/SA (generalized
Born/surface area) options, and techniques to decompose energies into pairwise contributions
from groups (where possible).

10.1. General instructions
The general procedure is to edit themm_pbsa.infile (see below), and then to run the code as

follows:

mm_pbsa.pl mm_pbsa.in > mm_pbsa.log

The mm_pbsa.infile refers to "receptor", "ligand" and "complex", but the chemical nature of
these is up to the user, and these could equally well be referred to as "A", "B", and "AB". The
procedure can also be used to estimate the free energy of a single species, and this is usually con-
sidered to be the "receptor".

The user also needs to prepareprmtopfiles for receptor, ligand, and complex using LEaP; if
you are just doing "stability" calculations, only one of theprmtopfiles is required.

The output files are labelled ".out", and the most useful summaries are in the "statistics.out"
files. These give averages and standard deviations for various quantities, using the following
labelling scheme:

*** Abbreviations for mm_pbsa output ***

ELE - non-bonded electrostatic energy + 1,4-electrostatic energy

VDW - non-bonded van der Waals energy + 1,4-van der Waals energy

2/28/02

MM_PBSA Page 235

INT - bond, angle, dihedral energies

GAS - ELE + VDW + INT

PBSUR - hydrophobic contrib. to solv. free energy for PB calculations

PBCAL - reaction field energy calculated by PB

PBSOL - PBSUR + PBCAL

PBELE - PBCAL + ELE

PBTOT - PBSOL + GAS

GBSUR - hydrophobic contrib. to solv. free energy for GB calculations

GB - reaction field energy calculated by GB

GBSOL - GBSUR + GB

GBELE - GB + ELE

GBTOT - GBSOL + GAS

TSTRA - translational entropy (as calculated by nmode) times temperature

TSROT - rotational entropy (as calculated by nmode) times temperature

TSVIB - vibrational entropy (as calculated by nmode) times temperature

*** Prefixes in front of abbreviations for energy decomposition ***

"T" - energy part due to _T_otal residue

"S" - energy part due to _S_idechain atoms

"B" - energy part due to _B_ackbone atoms

Theamber7/src/mm_pbsa/Examplesdirectory shows examples of running a "Stability" cal-
cultion (i.e. estimating the free energy of one species), a "Binding" calculation (estimating∆G for
A + B → AB), an "Nmode" calculation (to estimate entropies), and two examples of how total
energies can be decomposed (either by residue, or pair-wise by residue). You should study the
inputs and outputs in these directories to see how the program is typically used.

10.2. Preparing the input file
Below is a prototypemm_pbsa.infile; items in boldface would typically vary from run to

run.

#

Input parameters for mm_pbsa.pl

#

Holger Gohlke

08.01.2002

#

##

@GENERAL

#

2/28/02

MM_PBSA Page 236

General parameters

0: means NO; >0: means YES

#

mm_pbsa allows to calculate (absolute) free energies for one molecular

species or a free energy difference according to:

#

Receptor + Ligand = Complex,

DeltaG = G(Complex) - G(Receptor) - G(Ligand).

#

PREFIX - To the prefix, "{_com, _rec, _lig}.crd.Number" is added during

generation of snapshots as well as during mm_pbsa calculations.

PATH - Specifies the location where to store or get snapshots.

#

COMPLEX - Set to 1 if free energy difference is calculated.

RECEPTOR - Set to 1 if either (absolute) free energy or free energy

difference are calculated.

LIGAND - Set to 1 if free energy difference is calculated.

#

COMPT - parmtop file for the complex (not necessary for option GC).

RECPT - parmtop file for the receptor (not necessary for option GC).

LIGPT - parmtop file for the ligand (not necessary for option GC).

#

GC - Snapshots are generated from trajectories (see below).

AS - Residues are mutated during generation of snapshots from trajectories.

DC - Decompose the free energies into individual contributions

(only works with MM and GB).

#

MM - Calculation of gas phase energies using sander.

GB - Calculation of desolvation free energies using the GB models in sander

(see below).

PB - Calculation of desolvation free energies using delphi (see below).

MS - Calculation of nonpolar contributions to desolvation using molsurf

(see below).

If MS == 0, nonpolar contributions are calculated with the LCPO method

in sander.

NM - Calculation of entropies with nmode.

#

PREFIX snapshot

PATH ./

#

COMPLEX 1

RECEPTOR 1

LIGAND 1

#

COMPT ./parm_com.top

RECPT ./parm_rec.top

LIGPT ./parm_lig.top

#

GC 0

2/28/02

MM_PBSA Page 237

AS 0

DC 0

#

MM 1

GB 1

PB 1

MS 1

#

NM 0

#

##

@DECOMP

#

Energy decomposition parameters (this section is only relevant if DC = 1 above)

#

Energy decomposition is performed for gasphase energies, desolvation free

energies calculated with GB, and nonpolar contributions to desolvation

using the LCPO method.

For amino acids, decomposition is also performed with respect to backbone

and sidechain atoms.

#

DCTYPE - Values of 1 or 2 yield a decomposition on a per-residue basis,

values of 3 or 4 yield a decomposition on a pairwise per-residue

basis. For the latter, so far the number of pairs must not

exceed the number of residues in the molecule considered.

Values 1 or 3 add 1-4 interactions to bond contributions.

Values 2 or 4 add 1-4 interactions to either electrostatic or vdW

contributions.

#

COMREC - Residues belonging to the receptor molecule IN THE COMPLEX.

COMLIG - Residues belonging to the ligand molecule IN THE COMPLEX.

RECRES - Residues in the receptor molecule.

LIGRES - Residues in the ligand molecule.

{COM,REC,LIG}PRI - Residues considered for output.

{REC,LIG}MAP - Residues in the complex which are equivalent to the residues

in the receptor molecule or the ligand molecule.

#

DCTYPE 2

#

COMREC 1-166 254-255

COMLIG 167-253

COMPRI 1-255

RECRES 1-168

RECPRI 1-168

RECMAP 1-166 254-255

LIGRES 1-87

LIGPRI 1-87

LIGMAP 167-253

##

2/28/02

MM_PBSA Page 238

@DELPHI

#

Delphi parameters (this section is only relevant if PB = 1 above)

#

The first group of the following parameters are passed to delphi.

Additional parameters of delphi (e.g. SALT 0.10) may be added here.

For further details see the delphi documentation.

#

FOCUS - If FOCUS > 0, subsequent (multiple) PERFIL and SCALE parameters are

used for multiple delphi calculations using the focussing technique.

The # of _focussing_ delphi calculations thus equals the value of FOCUS.

INDI - Dielectric constant for the molecule.

EXDI - Dielectric constant for the surrounding solvent.

PERFIL - Percentage of the lattice that the largest linear dimension of the

molecule will fill.

SCALE - Lattice spacing in no. of grids per Angstrom.

LINIT - No. of iterations with linear PB equation.

BNDCON - Type of boundary condition.

CHARGE - Name of the charge file.

SIZE - Name of the size (radii) file.

#

SURFTEN / SURFOFF - Values used to compute the nonpolar contribution Gnp to

the desolvation according to Gnp = SURFTEN * SASA + SURFOFF.

#

FOCUS 0

INDI 1.0

EXDI 80.0

PERFIL 80.0

SCALE 2

LINIT 1000

BNDCON 4

CHARGE ./my_amber94_delphi.crg

SIZE ./my_parse_delphi.siz

#

SURFTEN 0.00542

SURFOFF 0.092

#

##

@GB

#

GB parameters (this section is only relevant if GB = 1 above)

#

The first group of the following parameters are passed to sander.

For further details see the sander documentation.

#

IGB - Switches between Tsui’s GB (1), Onufriev’s GB (2),

Jayaram’s et al. GB (3) or Jayaram’s et al. MGB (4).

SALTCON - Concentration (in M) of 1-1 mobile counterions in solution.

EXTDIEL - Dielectricity constant for the surrounding solvent.

2/28/02

MM_PBSA Page 239

#

SURFTEN / SURFOFF - Values used to compute the nonpolar contribution Gnp to

the desolvation according to Gnp = SURFTEN * SASA + SURFOFF.

#

IGB 4

SALTCON 0.00

EXTDIEL 80.0

#

SURFTEN 0.0072

SURFOFF 0.00

#

##

@MS

#

Molsurf parameters (this section is only relevant if MS = 1 above)

#

PROBE - Radius of the probe sphere used to calculate the SAS.

RADII - Name of the radii file.

#

PROBE 1.4

RADII ./atmtypenumbers

#

###

@NM

#

Parameters for sander/nmode calculation (this section is only relevant

if NM = 1 above)

#

The following parameters are passed to sander (for minimization) and nmode

(for entropy calculation using gasphase statistical mechanics).

For further details see documentation.

#

DIELC - (Distance-dependent) dielectric constant

MAXCYC - Maximum number of cycles of minimization.

DRMS - Convergence criterion for the energy gradient.

#

DIELC 4

MAXCYC 10000

DRMS 0.0001

#

###

@MAKECRD

#

The following parameters are passed to make_crd_hg, which extracts snapshots

from trajectory files. (This section is only relevant if GC = 1 OR AS = 1 above.)

#

BOX - "YES" means that periodic boundary conditions were used during MD

simulation and that box information has been printed in the

trajecotry files; "NO" means opposite.

2/28/02

MM_PBSA Page 240

NTOTAL - Total number of atoms per snapshot printed in the trajectory file

(including water, ions, ...).

NSTART - Start structure extraction from the NSTART-th snapshot.

NSTOP - Stop structure extraction at the NSTOP-th snapshot.

NFREQ - Every NFREQ structure will be extracted from the trajectory.

#

NUMBER_LIG_GROUPS - Number of subsequent LSTART/LSTOP combinations to

extract atoms belonging to the ligand.

LSTART - Number of first ligand atom in the trajectory entry.

LSTOP - Number of last ligand atom in the trajectory entry.

NUMBER_REC_GROUPS - Number of subsequent RSTART/RSTOP combinations to

extract atoms belonging to the receptor.

RSTART - Number of first receptor atom in the trajectory entry.

RSTOP - Number of last receptor atom in the trajectory entry.

Note: If only one molecular species is extracted, use only the receptor

parameters (NUMBER_REC_GROUPS, RSTART, RSTOP).

#

BOX YES

NTOTAL 25570

NSTART 1

NSTOP 5000

NFREQ 500

#

NUMBER_LIG_GROUPS 0

LSTART 0

LSTOP 0

NUMBER_REC_GROUPS 1

RSTART 1

RSTOP 2666

#

###

@ALASCAN

#

The following parameters are additionally passed to make_crd_hg in conjunction

with the ones from the @MAKECRD section if "alanine scanning" is requested.

(This section is only relevant if AS = 1 above.)

#

The description of the parameters is taken from Irina Massova.

#

NUMBER_MUTANT_GROUPS - Total number of mutated residues. For each mutated

residue, the following four parameters must be given

subsequently.

MUTANT_ATOM1 - If residue is mutated to Ala then this is a pointer on CG

atom of the mutated residue for all residues except Thr,

Ile and Val.

A pointer to CG2 if Thr, Ile or Val residue is mutated to Ala

If residue is mutated to Gly then this is a pointer on CB.

MUTANT_ATOM2 - If residue is mutated to Ala then this should be zero for

all mutated residues except Thr and VAL.

2/28/02

MM_PBSA Page 241

A pointer on OG1 if Thr residue is mutated to Ala.

A pointer on CG1 if VAL or ILE residue is mutated to Ala.

If residue is mutated to Gly then this should be always zero.

MUTANT_KEEP - A pointer on C atom (carbonyl atom) for the mutated residue.

MUTANT_REFERENCE - If residue is mutated to Ala then this is a pointer on

CB atom for the mutated residue.

If residue is mutated to Gly then this is a pointer on

CA atom for the mutated residue.

Note: The method will not work for a smaller residue mutation to a bigger

for example Gly -> Ala mutation.

Note: Maximum number of the simultaneously mutated residues is 40.

#

NUMBER_MUTANT_GROUPS3

MUTANT_ATOM1 1480

MUTANT_ATOM2 0

MUTANT_KEEP 1486

MUTANT_REFERENCE 1477

MUTANT_ATOM2 1498

MUTANT_ATOM1 1494

MUTANT_KEEP 1500

MUTANT_REFERENCE 1492

MUTANT_ATOM1 1552

MUTANT_ATOM2 0

MUTANT_KEEP 1562

MUTANT_REFERENCE 1549

#

###

@TRAJECTORY

#

Trajectory names

#

The following trajectories are used to extract snapshots with "make_crd_hg":

Each trajectory name must be preceeded by the TRAJECTORY card.

Subsequent trajectories are considered together; trajectories may be

in ascii as well as in .gz format.

To be able to identify the title line, it must be identical in all files.

#

TRAJECTORY ../prod_II/md_nvt_prod_pme_01.mdcrd.gz

TRAJECTORY ../prod_II/md_nvt_prod_pme_02.mdcrd.gz

TRAJECTORY ../prod_II/md_nvt_prod_pme_03.mdcrd.gz

TRAJECTORY ../prod_II/md_nvt_prod_pme_04.mdcrd.gz

TRAJECTORY ../prod_II/md_nvt_prod_pme_05.mdcrd.gz

#

##

@PROGRAMS

#

Program executables

#

DELPHI /home/gohlke/src/delphi.98/exe.R10000/delphi

2/28/02

MM_PBSA Page 242

#

##

10.3. Auxiliary programs used by MM-PBSA
The DelPhi program is not distributed with Amber. Information about the DelPhi package

is available on WWW site:

http://honiglab.cpmc.columbia.edu/

Other programs for computing numerical Poisson-Boltzmann results are also available, such as
MEAD and UHBD. These could be merged into the Perl scripts developed here with a little
work. See:

http://www.scripps.edu/bashford (for MEAD)

http://adrik.bchs.uh.edu/uhbd.html (for UHBD)

2/28/02

PROFEC Page 243

11. Profec

11.1. Introduction
PROFEC (Pictorial Representation Of Free Energy Changes) is a set of software tools for

carrying out and displaying extrapolative free energy calculations. Specifically, the PROFEC
software suite calculates the free energy for inserting a specified test particle at a grid of points
near the ligand of interest. A weighted electrostatic potential is also calculated for each position
on this grid. These two (van der Waals and electrostatic) grids can be visualized and overlaid on
a three-dimensional structure of the ligand or ligand-receptor complex to suggest positions where
modifications to the ligand would improve binding. The main strengths of PROFEC are its unbi-
ased evaluation of possible modifications and the ability to explicitly include the effect of solva-
tion in the analysis. The main weakness is its inability to deal with modifications at multiple sites
or modifications that induce large confomational changes.

PROFEC consists of three programs: makeGrid and makeDiffGrid generate and manipulate
the "free energy" grids, while the Field program allows interactive visualization and manipulation
of the grid data. A detailed description of the PROFEC algorithms and a demonstration of its
application to the benzamidine-trypsin complex can be found in R.J. Radmer and P.A. Kollman
[104].

11.2. makeGrid
makeGrid takes four inputs: a control file, an AMBER topology file (using the "old" for-

mat), an AMBER trajectory, and a reference structure in AMBER restart format. The program
then calculates the test particle grids (van der Waals and electrostatic) for a particle and location
specified in the control file. These grids are calculated based on the input topology and trajectory,
and projected onto the specified coordinates relative to the provided restart file. makeGrid is
designed as a standard Unix program; the input trajectory should be piped to the makeGrid com-
mand and other inputs specified on the command line:

cat <traj> | makeGrid <in> <top> <crd> <ljp> <vdw> <esp> <obj> <sav>

<in> Control file for makeGrid. The control file consists of a standard AMBER-style
namelist followed by atom specifications, described in detail below. The namelist
specifies control variables for the run (cutoff, grid dimensions and spacing) as well
as indicating the atoms that define the grid center and axes. The subsequent atom
specifications indicate which parts of the system to include in the free energy calcu-
lation. It is common in a protein-ligand complex to include everything _except_ the
ligand in the calculation. This way the grid reflects only the influence of the protein
and is not biased by nearby atoms of the ligand.

<top> AMBER format topology file for makeGrid. This should be the correct topology for
both the input trajectory and coordinate files.

<crd> Reference coordinates in AMBER restart format. Once the grid is calculated, it will
be rotated and translated to fit the appropriate atoms of this particular coordinate set.

<ljp> Specifies location of lennard-jones particle(s) to be added to all calculations. The
intent of this feature is to allow the user to calculate test partical grids for the case

2/28/02

PROFEC Page 244

where a lennard-jones particle is also added at the specified locations. Can be use-
full for modeling a simple modification and calculating a new test partical grid with-
out running an additional simulation. This should be used with caution, as the
results are subject to more noise then a standard calculation.

<vdw> van der Waals "cost field"; the vdw file is a scalar field of the free energy required to
insert the specified test particle on a grid of points relative to the ligand or atoms of
interest, based on the coordinates and parameters supplied in the <traj> and <top>
files. The grid is specified relative to the coordinates of the specified atoms as found
in the <crd> file. See the Field section below for format information.

<esp> weighted electrostatic potential field; the esp file is a scalar field in a format similar
to the vdw file. However, it contains the average electrostatic potential at each grid
point. This is not a true electrostatic potential -- instead, it is weighted by the proba-
bility that the test particle would occupy this location (boltzman factor of the the
vdw grid). This weighting avoids the infinite electrostatic contributions that result
from overlaps of the test charge with real atoms. Again, format information is sup-
plied with the description of the Field delegate, below.

<obj> indicates the location of lennard-jones particles added using the ljp file (above).
This is intended for use with MIDAS but is not critical.

<sav> detailed save file; this file contains all of the makeGrid output data in a format suit-
able for more detailed analysis. In particular, the sav file contains the data necessary
to concatenate the output of makeGrid runs on two different trajectories of the same
topology.

11.3. makeGrid input format
Here is a sample input file:

&cntrl

Rprobe = 1.9080, Eprobe = 0.1094,

iAtomO = 3877, iAtomX = 3879, iAtomY = 3883,

nGridX = 15, nGridY = 15, nGridZ = 15,

sGridX = 0.50, sGridY = 0.50, sGridZ = 0.50,

Xtrans = 0.0, Ytrans = 0.0, Ztrans = 0.0,

Temp = 300.0, cutoff = 8.0,

&end

include all

exclude residueName DMT

The namelist is delimited by the " &cntrl" and " &end" lines. It defines the input variables
for the run:

Rprobe, Eprobe
van der Waals parameters for the test particle. Rprobe is the R* value (in
Angstroms) and Eprobe the epsilon (kcal/mol).

iAtomO Origin atom for the grid. In the absence of other input, the grid will be centered on
this atom.

2/28/02

PROFEC Page 245

iAtomX Atom to define the x-coordinate of the grid.

iAtomY Atom to define the y-coordinate of the grid. iAtomO, iAtomX, and iAtomY are
used to define a constant frame of reference for the grid. The z- axis is generated by
the right hand rule. Typically all three are ligand atoms near the region of interest.
Also, these atoms should not move much relative to one another, since they are
assumed to be a relatively constant frame of reference.

nGridX, nGridY, nGridZ
number of grid points in each dimension; since the grid point (0,0,0) is centered on
the origin (iAtomO), this must be an odd number.

sGridX, sGridY, sGridZ
grid spacing in each dimension, in Angstrom. A grid spacing of 0.5 or 0.25
Angstrom is typical.

Xtrans, Ytrans, Ztrans
translation of the grid away from iAtomO, in Angstroms. This can be used to center
the grid at a position other than iAtomO (anywhere in space).

Temp Temperature used for the Boltzmann weighting and free energy calculation, in
Kelvin. 300K is typical.

cutoff the cutoff (in Angstroms) used to truncate calculation of the van der Waals and elec-
trostatic interactions. Note that this does _not_ have to be the cutoff used to gener-
ate the input trajectory.

The include and exclude commands specify the atoms to consider in the test particle
insertion and electrostatics calculations. Typically all atoms are included, then the
ligand of interest is specifically excluded. The commands are:

include/exclude all

residueName <name>

residueNumber <res>

residueRange <res1> <res2>

atomNumber <atom>

atomRange <atom1> <atom2>

where <name>, <res>, <atom>, etc. refer to residue names and residue or atom
numbers as specified in the input topology <top>

11.4. makeDiffGrid
PROFEC is typically used to suggest changes to a ligand that might improve its binding to a

given receptor. Since the free energy of binding involves both the bound and free states of the lig-
and, PROFEC can be used to compare the effects of ligand modification (test particle insertion) in
two different states. For example, if we want to compare our reference ligand (A) with a modi-
fied ligand A’, we use the following thermodynamic cycle:

ligand A (protein) ---dG1 (PROFEC)---> ligand A’ (protein)

| |

dGbind (A) dGbind (A’)

| |

2/28/02

PROFEC Page 246

V V

ligand A (water) ---dG2 (PROFEC)---> ligand A’ (water)

We want to know how the modification A -> A’ affects the binding free energies. That is,
we wish to calculate ddGbind = dGbind (A) - dGbind (A’). By the thermodynamic cycle, we
know that ddGbind = dG1 - dG2, so we can use PROFEC to calculate the value of interest, ddG-
bind.

This is done by generating grids from two different trajectories; first, grids are calculated for
the protein-ligand complex. Second, grids are generated for a simulation of the free ligand (in
water). Both of these grids must be defined relative to the _same_ set of atoms on the ligand in
each trajectory.

Finally, the program makeDiffGrid can be used to generate a third grid file that is the differ-
ence of two input grids. For calculating the free energy of binding, one would use

makeDiffGrid <protein.vdw> <solvent.vdw> <output.vdw>

makeDiffGrid <protein.esp> <solvent.esp> <output.esp>

In the <output.vdw> grid, negative values indicate grid positions where adding the test par-
ticle favors the protein-ligand complex at the expense of the water-ligand interaction. These are
the locations where the ligand might be modified to increase the binding free energy. The <out-
put.esp> file, however, giv es a more qualitative indication of how charge should be distributed to
favor binding; negatively charged groups should be added in regions of positive electrostatic
potential, and vice versa.

For other applications of makeGrid and makeDiffGrid, please consult the Radmer and Koll-
man paper cited above.

11.5. Field
Field is a delegate for the MidasPlus graphics program that overlays the grids created by

makeGrid or makeDiffGrid on top of a three-dimensional molecular structure. Field permits
interactive contouring and coloring of the van der Waals and electrostatic grids, allowing the user
to visualize areas of the molecule where modifications might be favorable or unfavorable. Field
is invoked like any other MidasPlus delegate; from within MidasPlus, load the structure of inter-
est (the reference structure used in makeGrid), and then start the Field delegate (refer to the
MidasPlus manual for details on the delegate function).

Once the Field delegate is started, the following commands may be used:

read contour <vdw-filename>

read color <esp-filename>

contour <vdw-value>

color <esp-value1> <color1> <esp-value2> <color2>

erase

slice (No longer suppored)

If you do not have access to the MidasPlus program, or wish to use another visualization
package, the exact format of the vdw and esp grid files is supplied below.

2/28/02

PROFEC Page 247

11.6. Data formats

vdw, esp format:

header and comments

##

input, output files

##

control variables from <in>

##

included, excluded atoms

##

atom type information from <top>

##

##

21 21 21 # number of Grid spaces (3I12)

.500 .500 .500 # size of Grid spacing (3F12.3)

-.109328 .993533 -.030654 # rotation matrix (3F12.6)

.900871 .112071 .419371 # rotation matrix (3F12.6)

.420094 .018234 -.907297 # rotation matrix (3F12.6)

51.064120 30.547364 24.991392 # translation vector (3F12.6)

.92329E+01 .54755E+01 .54026E+01 .57455E+01 .14020E+02 .34699E+02

grid data points continue in (6E12.5) format, ZYX slices without indexing

2/28/02

NMODE Page 248

12. Nmode

Usage:

nmode [-O] -i nmdin -o nmdout -c inpcrd -p prmtop -r restrt

-ref refc -v vecs -l lmode -t tstate -e expfile

−O: Overwrite output files if they exist.

12.1. Introduction
This program performs molecular mechanics calculations on proteins and nucleic acids,

using first and second derivative information to find local minima, transition states, and to per-
form vibrational analyses. It is designed to read theprmtopandinpcrd files from the Amber suite
of programs. Both Additive and Non-additive Hamiltonians are available in this version. There
are accompanying programsnmanal(normal mode analysis) andlmanal (Langevin mode analy-
sis) that use the output of these programs to compute molecular fluctuations and time correlation
functions. Nmodewas originally written at the University of California, Davis, by D.T. Nguyen
and D.A. Case, based in part on code in the Amber 2.0 package. Major revisions were made at
the Research Institute of Scripps Clinic by J. Kottalam and D.A. Case. M. Pique has provided
valuable advice and help in porting it to many different machines. J.W.Caldwell inplemented the
non-additive capabilities.

The second derivative routines are based on expressions used in the Consistent Force Field
programs [105]. The code also contains routines to search for transition state, starting (generally)
from a minimum. This procedure uses a modification of the procedure of Cerjan and Miller
[106], as described by Nguyen and Case [107]. Langevin modes are analogous to normal modes,
but in the presence of a viscous coupling to a continuum solvent. The basic ideas are presented
by Lamm and Szabo [108], and were implemented in the Amber environment by Kottalam and
Case [109].

12.2. General description This program performs five tasks, depending on the value of
the input variable ntrun (see below):

(1) Perform a normal mode analysis from starting coordinates. Requires an input structure
that has already been minimized, from process (4), below, or by some other method. In
addition to the computation of normal mode frequencies, thermodynamic parameters are
calculated.

(2) Search for transition state, starting (generally) from a minimum. See the references above
for a detailed description of the method.

(3) Perform a conjugate gradient minimization from the starting coordinates. This routine
uses an IMSL library routine for this purpose, which is not supplied with this program.
Persons who do not have access to the IMSL library should probably use the AMBER
"sander" program to carry out conjugate gradient minimizations. (Use the double preci-
sion version for best convergence.)

2/28/02

NMODE Page 249

(4) Does a Newton-Raphson minimization from starting coordinates. A constant (tlamba) is
added to the diagonal elements of the Hessian matrix to make it positive definite. Tlamba
is chosen in a manner such that the step is always downhill in all directions. Whenever the
change in energy is > emx or the rms of step length is > smx, the step length is scaled
back repeatedly until the above two conditions are satisfied. Note that this routine will
not converge to a transition state.

(5) Perform a langevin mode calculation, starting from a minimized structure. This option is
similar to (1), but includes the viscous effects of a solvent in the calculation.

Input files for this program are the same as for the regular AMBER minimization and
molecular dynamics programs, with the exception of File 5, whose parameters are given below.
The defaults have been carefully selected, so that for most purposes, few of them need to be
changed. See the sample runs for more information.

12.3. Files

nmdin : control input for the run

nmdout : standard output file for print and error messages

prmtop : parameter file as output by the AMBER program parm

inpcrd : starting coordinates

refc : input coordinates for constraints

restrt : output coordinates at end of minimization

prlist : file for reading or storing the non-bonded pair list

vecs : file containing output normal mode frequencies and eigenvectors

tstate : output coordinates at a transition state

expfile: file to read exposed surface area for atoms

lmode : file to write Langevin modes

12.4. Input description
Input found onnmdin: You can use as many title cards as you want, followed by the

namelist&data , which contains the following variables.

General flags describing the calculation

ntrun 1: do normal mode analysis(default)
2: search for transition states
3: do conjugate gradient minimization (requires IMSL library)
4: do Newton-Raphson minimization
5: do Langevin mode analysis

ibelly 1: some atoms are to be held fixed (default=0)

2/28/02

NMODE Page 250

icons 1: do constrained minimization to initial coordinates specified inrefc.
(default=0)

maxcyc max. number of cycles for minimization (default=100)

drms rms gradient to stop minimization (default=1.e-5)

nv ect number of vectors for normal mode analysis (default=0)

nsave for every nsave steps the coordinates are saved. (default= 20)

nprint every nprint-th step the energy will be printed

ilevel if .ne. 0, then adjust second derivative matrix to put rotation and translation vec-
tors to a high frequency; this can be useful if you want to perform a normal mode
analysis from a not-completely-minimized structure, so that rotations and transla-
tions don’t mix with the low-lying modes (default=0).

ivform 0 if the normal mode eigenvectors are to be written out in unformattted form; 1
to use the formatted option (default).

ntx 0 if the input coordinates are to be read in unformattted form; 1 to use the for-
matted option (default).

ntxo 0 if the output (restart) coordinates are to be written out in unformattted form; 1
to use the formatted option (default).

Control of certain force field parameters

cut radius for non-bonded cutoff (default=99.)

scnb 1-4 nonbonded scale factor (default=2.0)

scee 1-4 electrostatic scale factor (default=2.0)

dielc dielectric constant (default=1.0)

idiel 0 for r**2 dielectric dependence (default); 1 for constant dielectric.

ipol = 0 no polarization (default)
= 1 include polarization modules

i3bod = 0 no three-body interactions(default)
= 1 readin and use specified three body interactions

(see the sander input area for details)

iprr 1: read in a non-bonded pair list fromprlist; (default = 0)

iprw 1: write out non-bonded pair list toprlist; (default = 0)

2/28/02

NMODE Page 251

control of Newton-Raphson and transition-state searches

smx maximum rms step length (default = 0.08)

emx maximum energy change per step (default =0.3)

alpha scale factor for step length (default = 0.8) (See Nguyen and Case paper for
description of smx, emx, and alpha.)

bdwnhl constant to determine tlamba, the value to be subtracted from the diagonal ele-
ments of Hessian matrix for a downhill step. tlamba is chosen as min ((lowest
eigenvalue - bdwnhl) , 0.00d0). (default bdwnhl = 0.1)

ndiag for ev ery ndiag steps, the matrix is diagonalized to calculate tlamba, when
ntrun=4

dfpred a rough estimate of the expected reduction in energy for the initial step (only for
ntrun = 3). (default = 0.01 kcal/mol)

parameters for running Langevin modes (set ntrun = 5)

eta viscosity in centipoise

ioseen 0: Stokes Law used for hydrodynamic interaction
1: Oseen interaction included
2: Rotne-Prager correction included

hrmax hydrodynamic radius for the atom with largest area exposed to solvent. If a file
named ’expfile’ is present, then the relative exposed areas are read from that file
as a namelist

namelist /exposure/ expr(natom)

If ’expfile’ does not exist, then all atoms are assigned a hydrodynamic radius of
hrmax.

2/28/02

NMODE Page 252

parameters for transition state search (when ntrun = 2)

istart 0: new calc. (default)
1: restart calc.

iflag 0: search for transition state then minimum (default)
1: search for minimum from a transition state
-1: search for a transition state, then stop

iv ect no. of eigenvectors wanted (default=2) (ivect has to be >=isdir)

isdir eigenvector along which search for transition state is to be made. Note that
translations and rotations are removed from the Hessian, so this number refers to
the ordering of the "true" vibrational normal modes. (default=1)

idir search direction: = 1 along isdir direction (default); = -1 opposite isdir direction

isw no. of steps before switching to the lowest mode (default=40)

hnot initial step length (default=0.1 Ang.)

buphl switch to Newton-Raphson step when lowest eigenvalue is less than this for
uphill walk. (default=-0.1)

Cards 3 group cards for the parts of the molecule that move, if ibelly.ne.0. See group
documentation for format.

Cards 4 group cards for the part of the molecule to be constrained, along with the con-
straint weights, if icons.ne.0. See group documentation of format.

2/28/02

quasih Page 253

12.5. quasih

NAME
quasih − compute quasiharmonic frequencies and directions from a trajectory

SYNOPSIS
quasih -natom # [-f # -m <mass> -x <xyz>} [-novec | -v <vecs>] [-first #] [-last
] [-nmode #]

DESCRIPTION
quasih reads in a trajectory file, computes the matrix of cartesian fluctuations,
diagonalizes this matrix, and computes the quasiharmonic frequencies and direc-
tions [110]. The input coordinates (on STDIN) should first have been run
throughptraj to superimpose on a common coordinate frame.

OPTIONS
The number of atoms,natom, is a required parameter. Parametersfirst and last
refer to snapshot numbers in the input file: only parts of the trajectory between
these two snapshot values will be used to compute the flucutation matrix. The
nmodeparameter (required) indicates how many eigenvectors will be computed;
the default compiled-in maximum is 50. The-f flag specifies type of input, and is
2 for a standard Amber trajectory, and 5 for a trajectory in the "binpos" format.

FILES
Themassfile is required for input: it contains floating point numbers (10F8.2 for-
mat) giving atomic masses, in the same order as the atoms in the input stream.
The scriptpdb_to_masscan generally be used to construct this file.

Output files arexyz, holding the average coordinates, andvecs, holding the eigen-
vectors. By default, theMakefiledefines a symbol FORMATTED, which makes
these files be human-readable. For large systems, you can recompile without
this symbol to save on output disk space. Information about the frequencies, and
thermodynamic values calculated from them, are sent to STDOUT.

2/28/02

NMANAL module Page 254

12.6. nmanal

Usage:

nmanal [-O] -i nmdin -o nmdout -p prmtop -v vecs -r rvecs

−O Overwrite output files if they exist.

This is a general routine to do vibrational analysis by projecting cartesian normal mode
eigenvectors (generated by the nmode program) onto internal coordinates or onto "rigid groups."
For each internal coordinate, the program will determine the projection of each normal mode onto
that coordinate, and the fraction of the total potential energy change along the normal mode that
is contributed by that internal coordinate (the "potential energy distribution" for each mode.) You
can also sum over all modes to obtain the rms thermal fluctuations for any particular internal
coordinate.

The program can also compute the rms thermal fluctuations of atoms in a cartesian coordi-
nate frame, and will compute time correlation functions and fluctuations of internal coordinates.

The original code was written by D. T. Nguyen and D. A. Case at U. C. Davis, 1985. The
RMS analysis added by Barbara Rudolph. Capabilities for time correlation functions were added
by J. Kottalam at Scripps Clinic. Responsibility for the final versions of the codes (and for any
bugs) rests with Dave Case.

Filesused in the program:

nmdin : control input for the run, described below.

nmdout : standard output file for print and error messages

prmtop : formatted parameter file

vecs : formatted file containing output normal mode

frequencies and eigenvectors. This file is generated

by the program nmode.

rvecs : formatted file containing the reference eigenvectors

and associated frequencies

Input found on nmdin:

Card 1: Title of the run

Cards 2: namelist /data/, which contains the following parameters:

ntrun Values ofntrun from −1 to 3 are used to analyze modes in terms of internal coor-
dinates (ifipro = 1), to compute thermal fluctuations in internal coordinates (if
ifluc = 1), or to compute time correlation and cross-correlation functions (ifntrun
= -1). Options 4 and 5 are present only for historical reasons (although the code
might be a good starting point for some interesting calculations), and options 6 to
8 carry out some specialized tasks:(default=1)

2/28/02

NMANAL module Page 255

=-1 project eigenvectors onto those internal coordinates read in on subsequent
cards (labelled "3c", below).
= 0 project eigenvectors onto bonds only
= 1 project eigenvectors onto all internal coordinates
= 2 " " " angles and dihedral angles
= 3 " " " dihedral angles only
= 4 project eigenvectors onto "dynamics groups"
= 5 project eigenvectors of the system(’system vectors’) onto reference eigenvec-
tors. (This is a fairly specialized option, and you will probably have to look at
the code to see what you really get. It has rarely been used.)
= 6 just calculate rms fluctuations in cartesian coordinates.
= 7 compute dipole-dipole correlation functions. In this case, prmtop is not
read, and the &data namelist must be followed by cards that have two integers
per card (free format), giving the atom numbers for each pair for which the corre-
lation functions are desired. See subroutine "corf" for details of the calculational
procedure.
= 8 project MD snapshots onto normal mode directions

nv ect = number of eigenvectors in file vecs to be read in (default=50)

ivform = 0 if the input vectors are in unformatted form
= 1 for input vectors in formatted form (default)

ieff = 0 use true frequencies (default)
= 1 use effective frequencies (not implemented!)

pcut cutoff value for printing out projections: print will occur if the estimated contri-
bution of an internal coordinate to the total potential energy distribution along
this mode exceed pcut. (default = 0.02)

ibelly = 0 (default) no belly
= 1 belly calculation

ibeg first eigenvector to be analyzed (default = 7)

iend last eigenvector to be analyzed (default = 50)

ifluc = 0 don’t do the rms internal crds. fluctuation(default)
= 1 do the rms internal crds. fluctuation for the internal coordinates selected by
the "ntrun" variable

ipro = 0 don’t print out the projections onto internal crds.
= 1 print out the projections onto int. crds (default)

bose true. if quantum (Bose) statistics are to be used in populating the modes; .false.
(default) if classical (Boltzmann) statistics are to be used.

natom number of atoms; only needed if ntrun=7 or 8

ihsful = 0 if dipole-dipole correlations do not include contributions from distance fluc-
tuations
=1 (default) if both distance and angle fluctuations are to be included in dipole-
dipole correlations.

tmax maximum value for time correlation functions ifntrun = 7. Default is 0.0, i.e. no
time correlations will be carried out.

tintvl interval for time correlation functions (default = 1.0).

2/28/02

NMANAL module Page 256

The following are only used if ntrun=8:

first first snapshot from MD simulation be be projected onto normal mode directions,
whenntrun= 8. Default = 1.

last last snapshot to be projected. Default = 9999.

iskip everyiksip-th snapshot will be projected. Default = 1.

The following are only used if ntrun=5:

nrgrp number of rigid groups (default = 0)

nrvec number of reference eigenvectors to be read in from file "rvecs" (only if ntrun=5;
default=0)

nrat number of atoms in reference system (default=0)

iat first atom number of the part of the system to be excised and compared to refer-
ence system (only if ntrun = 5; default=1)

jat last atom number of the part of the system to be excised (only if ntrun = 5;
default = natom)

imov flag to rotate/translate eigenvectors of system and reference to principal axes.
This essentially decouples translation and rotation of the excised part of the sys-
tem as a rigid body from the rest of the vibrational motion (only if ntrun=5,
default=0).

Cards 3a group cards for the parts of the molecule that move, only if ibelly.ne.0. See
group documentation for format. This card is not needed when ibelly = 0.

Cards 3b group cards for subdividing the molecule into rigid groups (if ntrun=4). See
group documentation for format. Each rigid group will have its own set of cards
3b.

Cards 3c (if ntrun .eq. -1)Quantities for which time correlation functions are to be calcu-
lated. These quantities are of the form of internal coordinates. All input is free
format, which means that you must enter all numbers -- blanks are ignored.

TYPE, IAT, JAT , KAT, LAT
INTNAME = identifier for this internal coordinate (character*8)
IAT, JAT , KAT and LAT are atom numbers. Set LAT to

zero for bonds and angle, KAT to zero for bonds. Repeat this card
for as many internal coordinates as you are interested in, up the
the value of MAXINT specified in the "sizes.h" header file.

Input is terminated when the end-of-file is reached.

2/28/02

NMANAL module Page 257

12.7. lmanal

Usage:

lmanal [-O] -i lmdin -o lmdout -c inpcrd -l lmode

−O Overwrite output files if they exist.

This program will compute time correlation functions from Langevin modes. Note that
since the time-independent aspects of the molecular normal mode description are independent of
solvent viscosity, all of the equal-time correlations (such as rms fluctuations in cartesian or inter-
nal coordinates) will be the same as for the vacuum calculation. Hence the companion program
nmanalshould be used to compute those.

Input description for thelmdinfile:

namelist default meaning

&data

ntrun 1 ’type of run’ flag

1: correlation function calculated is

for the deviation of the length of

the vector from the reference value

in the minimum energy structure.

i.e., <dr(t)dr(0)> / <dr(0)dr(0)>

2: for the orientation of the vector

i.e., <P2[r(t).r(0)]>

3: the frequency distribution is plotted

i.e., the imaginary parts of the

eigenvalues are counted at every interval

of 10 wavenumbers. Other input parameters

are irrelevant.

kup 1

lup 2 atom numbers defining a position vector

nvect 12 number of langevin modes to be used

tf 2.0 final time for correlation functions

i.e., t ranges from 0.0 to tf picoseconds

np 1000 number of points at which to calculate

correlation function between t = 0.0 and

t = tf ps.

bose .false. .true. if quantum (Bose) statistics are to be

used in populating the modes; =.false. (default)

if classical (Boltzmann) statistics are to be

used.

&end

2/28/02

LMANAL module Page 258

The input fileinpcrd is a standard Amber coordinate file; the filelmodeis that created by
the nmodeprogram with ntrun = 5. Output files are CORF (if ntrun = 1 or 2) and DENS,
CUMU (if ntrun = 3.) All of the output files (exceptlmdout) are input files for the <plot79>
package, which will create plots of the correlation functions. You should(?) have little trouble
converting them to some other plotting package in order to see the correlation functions.

Sample input file for nmode with ntrun=1

get vibrational modes for staph nuclease ternary complex
&data

ntrun = 1, do vibrational calculation
cut=10.0, cutoff; use same value in minimization
idiel=0, distance-dependent dielectric
nvect=6753, write out all 3*N modes...
ivform=0, ...in unformatted form...
ilevel=0, ...with no removal of trans. & rotation
drms = 0.0001, will complain if rms gradient is not

less than this
&end

Sample input file for nmanal with ntrun=7
#

Get N-H S**2 values from quasi-harmonic modes
&data

ntrun=7, compute dipole-dipole correlation fns.
nvect=4496, this many modes in input file
ibeg=1, iend=4496, use all of the modes for the calculation
ivform=0 unformatted modes files
natom=1529, molecule has this many atoms
ihsful=0, do no include distance fluctuations

&end
3 4 atom numbers for N and H of residue 1
11 12
20 21
28 29
38 39

2/28/02

RESP Page 259

13. Resp

Usage:

resp [-O] -i input -o output -p punch -q qin -t qout

-e espot -w qwts -s esout

−O Overwrite output files if they exist.

RESP (Restrained ElectroStatic Potential) fits the quantum mechanically calculated electro-
static potential (esp) at molecular surfaces using an atom-centered point charge model. This
method was developed primarily by Christopher Bayly. [111-113] A quantum mechanical pro-
gram, such as Gaussian, Jaguar, or GAMESS, must be used to generate the ESP input for RESP.
See $AMBERHOME/src/resp/0README for tips for interfacing such programs with RESP.
Note thatantechamberautomates most of this process: use the-fo gcrt option to create a Gaus-
sian input file; then run Gaussian; then use the-fi gout -c respoption to automatically create the
resp input file and run a two-stage fitting procedure. If you don’t use Gaussian, you can still run
respgento automatically create the input files needed for resp.

file flag fortran purpose

name unit

input -i 5 required input options

output -o 6 a/p output of results

punch -p 7 a/p synopsis of results

qin -q 3 optional replacement charges

qout -t 19 a/p ouput of current charges

espot -e 10 required input of ESP’s and coordinates

(note: these must in atomic units)

qwts -w 4 optional input of new weight factors

esout -s 20 optional generated esp values for new

charges

a/p = always produced

Input included in the "-i" file

-1st line-

TITLE input: a character string

-2nd section-

2/28/02

RESP Page 260

Begin with namelist " &cntrl" (see example at end)

inopt = 0 normal run

= 1 cycle through a list of different qwt

read from -w unit

ioutopt = 0 normal run

= 1 write restart info of new esp etc to

unit -es (esout unit)

iqopt = 1 reset all initial charges to zero (default)

= 2 read in new initial charges from -q (qwt)

= 3 read in new initial charges from -q (qwt)

and perform averaging of those new

initial charges according to ivary values

(normally not used)

nmol = n the number of molecules in a multiple molecule

fit (default 1)

ihfree = 0 all atoms are restrained

= 1 hydrogens not restrained (default)

irstrnt = 0 harmonic restraints (old style)

= 1 hyperbolic restraint to charge of zero (default)

= 2 only analysis of input charges; no

charge fitting is carried out

qwt = normally use 0.0005 for Stage 1 (default)

" " 0.001 for Stage 2

end namelist " &cntrl" with " &end"

-3rd "line"-

wtmol relative weight for the molecule if

multiple molecule fit (1.0 otherwise)

-4th "line"-

subtitle for molecule (a character string)

-5th "line"-

charge, iuniq (charge and number of atoms, in 2I5 format)

-6th "area"-

one line for each atom, in 2I5 format:

2/28/02

RESP Page 261

Atomic number, ivary

ivary

= 0 charge varied independently of previous

centers

= n current charge fitted together with

center "n"

= -99 charge frozen at "initial charge" value

typically read in unit "qin"

-7th- "area"

charge constraints... blank line if no constraints, otherwise

in I5,F10.5 format

ngrp = number of centers in the group associated with this

constraint (i.e. the number of centers to be read in)

grpchg(i) = charge to which the associated group of atoms

(given on the next card) is to be constrained

-7.1th- "area"

imol, iatom (in 16I5 format)

the list (ngrp long) of the atom indices of those atoms to be

constrained to the charge specified on the previous line.

*blank to end

-8th "area"-

intermolecular charge constraints

same format as indvidual molecule constraints

*blank to end

-9th "area"-

Multiple molecule atom equivalencing

format is analagous to 7th area and 7.1

ngrp(I5) and then, on separate lines: imol,iatoms(16I5)

*blank to end

Other file formats

2/28/02

RESP Page 262

-q input of replacement charges if requested, 8F10.6 format

(note: same format as produced by -q)

-w input of new weight factors if requested

input: i5 nqwt number of new weights to cycle thru

input: f10.5 new weights (nqwt lines)

-e input of ESP’s and coordinates

-1st line-

n_atoms n_esp_points (2I5 format)

-2nd- 2->natoms+1 lines-

atom coordinates

x,y,z (in Bohrs) (format is 17x,3e16.7)

-3rd natoms+2->natoms+2+nesp lines-

potential and coordinate

qpot,x,y,z (in a.u.,bohrs) (format is 1X,4E16.7)

Several examples of input and output files are in$AMBERHOME/exam-
ples/resp_charge_fit ; these should be consulted by those interested in running the pro-
gram.

2/28/02

nucgen Page 263

14. Miscellaneous

14.1. nucgen

Usage: nucgen [-O] -i ngin -o ngout -d ngdat -p pdbout

−O Overwrite output files.

This program generates cartesian coordinate models for either double helical DNA or RNA with a
number of possible conformations. The helical topology of the double helix is stored in a file for
individual types in terms of cylindrical coordinates. The program loads the required topoplogy
and applies two fold symmetry with necessary helical repeat and height values. The cartesian
coordinates are output in PDB format. The residue information is read as in the link module
either for DNA or RNA. The input is described below.

NUCGEN requires specification of two strands: if only one is given, it will wrap it into two
with highly stretched base-phosphate bonds across the end, so for single strands, specify a
dummy strand and edit it out of the resulting PDB file. NUCGEN only generates reasonable
geometries for complementary base pairs.

NUCGEN can generate PDB files using the 1994 Amber force field convention, which does
not have explicit terminal hydrogen or phosphate residues. For the new residue names, only the
bases need to be specified, while for the old convention, terminal hydrogen residues (HB and HE)
and phosphates (POM) must also be specified. In the 1994 convention, residues are indicated by
the first letter (A, G, C, T) and terminal residues have an additional 5 or 3 appended (e.g.A5,
A3). See the LEaP chapter for a table of these names.

file unit purpose

ngin 5 Input: Control and sequence data for the run

ngout 6 Output: Diagnostics

ngdat 7 Input: Monomer geometry file, found in amber41/dat

pdbout 10 Output: PDB output coordinates

Nucleic Acid sequence information is given as described here for each strand. Both strands
are entered in the 5’ to 3’ direction.

- 1A - A TITLE FOR EACH STRAND (20A4)

TITLE A title for the molecule.

2/28/02

nucgen Page 264

- 1B - ILBMOL (A4)

ILBMOL Label for the type of molecule.

’D’ DNA

’R’ RNA

- 1C - RESIDUE INFORMATION FOR EACH STRAND

it is read in the following format until a blank

card is encounterd (card 1D).

LBRES(I) , I = 1,NRESM (16(A4,1X))

LBRES(I) Residue name.

--

- 1D - Blank Card to terminate residue input

--

NOTE: Cards 1A-1D are repeated for the second strand.

--

- 2 - KEND (A4)

KEND Control to stop reading the nucleotide strands.

’END ’ end of reading the sequence information

--

- 3 - CONTROL FOR THE TYPE OF DNA OR RNA CONFORMATION

TYPM (A8)

TYPM Name of the type of conformation to be generated.

’$ARNA’ right handed a-rna (arnott)

’$APRNA’ right handed a-prime rna (arnott)

’$LBDNA’ right handed bdna (langridge)

’$ABDNA’ right handed bdna (arnott)

’$SBDNA’ left handed bdna (sasisekharan)

’$ADNA’ right handed a-dna (arnott)

’$SPECIAL’ special type by the user

--

2/28/02

nucgen Page 265

- 4 - special helical parameter

***** only if typm .eq. ’$SPECIAL’ *****

hxrep , hxht (2f10.5)

hxrep Helical repeat angle in degrees for the special

type of conformation.

hxht Helical height.

NOTE: If you use ’$SPECIAL’, you will have to

add the appropriate data to file ngdat (found

in the database directory). Consult subroutine

gennuc for details.

2/28/02

ambpdb Page 266

14.2. ambpdb

NAME
ambpdb − convert amber-format coordinate files to pdb format

SYNOPSIS

ambpdb [-p prmtop-file][-tit title] [-pqr|-bnd|-atm]

[-aatm] [-bres] [-noter] [-offset #]

DESCRIPTION
ambpdbis a filter to take a coordinate "restart" file from an AMBER dynamics or
minimization run (on STDIN) and prepare a pdb-format file (on STDOUT). The
program assumes that aprmtop file is available, from which it gets atom and
residue names.

OPTIONS

title The title, if given, will be output as a REMARK at the top of the file. It should
be protected by quotes or double quotes if it contains spaces or special charac-
ters.

-pqr If -pqr is set, output will be in the format needed for the MEAD suite of pro-
grams created by Don Bashford. The-atm option creates files used by Mike
Connolly’s surface area/volume programs. The-bnd option creates a file that
lists the bonds in the molecule, one per line.

-aatm This switch controls whether the output atom names follow Amber or
Brookhaven (PDB) formats. With the default (when this switch is not set), atom
names will be placed into four columns in an approximation to the rules used by
the Protein Data Base. This gives files that look very much like PDB files,
EXCEPT that PDB uses "1" and "2" for amino-acid beta-protons (for example)
whereas the standard Amber database (along with many in the NMR field) use
"2" and "3", i.e. we have 2HB and 3HB, whereas Brookhaven files use 1HB and
2HB. Theprotonateprogram can be used to check and re-name proton names to
various conventions.

If -aatmis set, Amber atom names will be left-justified in the output file, starting
in column 13.

Generally speaking, Amber programs that read PDB files (likeprotonateand
LEaP, work with either style of atom names. Programs like RASMOL, that
expect more strict conformance to Brookhaven standards, require the default
behavior; some other programs may work better with-aatm set, so that (for
example) all hydrogen atoms begin with "H", etc.

-bres If -bres(Brookhaven-residue-names) is not set (the default), Amber-specific atom
names (like CYX, HIE, DG5, etc.) will be kept in the pdb file; otherwise, these
will be converted to PDB-standard names (CYS, HIS, G, in the above example).
Note that setting -bres creates a naming ambiguity between protonated and upro-
tonated forms of amino acids, and between DNA and RNA.

2/28/02

ambpdb Page 267

If you plan to re-read the pdb file back into Amber programs, you should use the
default behavior; for programs that demand stricter conformance to Brookhaven
standards, set-bres.

-noter If -noter is set, the output PDB file not include TER cards between molecules.
Otherwise, TER cards will be added whenever there is not bond between adja-
cent residues. Note that this means there will be a TER card between each water
molecule, for example, unless-noter is set. The PDB is idiosyncratic about TER
cards: they are generally present between separate protein chains, but generally
not present between cofactors or solvent molecules. This behavior is not mim-
icked byambpdb.

-offset If a number is given here, it will be added to all residue numbers in the output
pdb file. This is useful if you want the first residue (which is always "1" in an
Amber prmtop file, to be a larger number, (say to more closely match a file from
Brookhaven, where initial residues may be missing). Note that the number you
provide is one less than what you want the first residue to have.

Residue numbers greater than 9999 will not "fit" into the Brookhaven format;
ambpdb actually prints mod(resno,10000); that is, after 9999, the residue number
re-cycles to 0.

FILES
Assumes that aprmtop file (with that name, or the one given in the-p option)
exists in the current directory; reads AMBER coordinates from STDIN, and
writes pdb-file to STDOUT.

BUGS
Inevitably, various niceties of the Brookhaven format are not as well supported as
they should be. Theprotonateprogram can be used to fix up hydrogen atom
names, but that functionality should really be integrated here. There is no good
solution to the PDB problem of using the same residue name for different chem-
cial species; depending on how the output file is to be used, the two options sup-
ported (setting or not setting-bres) may or may not suffice. Radii used for the
-pqr option are hard-wired into the code, requiring a re-compilation if they are to
be changed. Atom name output may be incorrect for atoms with two-character
atomic symbols, like calcium or iron. The-offset flag is a very limited start
toward more flexible handling of residue numbers; in the future (we hope!)
Amberprmtopfiles will keep track of the "original" residue identifiers from input
pdb files, so that this information would be available on output.

2/28/02

protonate Page 268

14.3. protonate

NAME
protonate − add protons to a heavy-atom protein or DNA PDB file; convert pro-
ton names between various conventions; check (pro)-chirality.

SYNOPSIS

Usage: protonate [-bcfhkmp] [-d datafile]

[-i input-pdb-file] [-o output-pdb-file] [-l logfile]

[-al link-file] [-ae edit-file] [-ap parm-file]

-b to write Brookhaven-like atom names

-c to write chains as separate molecules

-f to force write of atoms found (debugging)

-h to write ONLY hydrogens to output file

-k to keep original coordinates of matched protons

-m to list mismatched protons

-p to print proton substitutions

-d to specify datafile (default is PROTON_INFO)

-i to specify input file (default is stdin)

-o to specify output file (default is stdout)

-l to specify logfile (default is stderr)

DESCRIPTION
Protonatecombines a program originally written by K. Cross to add protons to a
heavy-atom pdb file, with many extensions by J. Holland, G.P. Gippert & D.A.
Case. Names and descriptions of the output protons are contained in the info-file
(see below.)Protonatecan be used to add protons that don’t exist, to change the
names of existing protons to some new convention, and to check pro-chirality of
protons in an input pdb file. The source code is in thesrc/protonate/
directory. Protonate generally will not do a careful job of orienting polar hydro-
gens, particularly for hydroxyls of serine, threonine and tyrosine; you can use the
pol_hprogram (described below) for this purpose.

OPTIONS

−k The output pdb file will keep the proton coordinates of the input file, to the extent
consistent with how well it can identify what names they should really have.
Otherwise it will replace input protons with ones it builds.

−b The program will insert a space before the name of each heavy atom in the output
file. This is most often used to convert input files whose atom names begin in
column 13 to the Brookhaven format where most heavy atom names begin in col-
umn 14. NOTE: two-letter heavy atom names (like FE or CA [calcium]) will not
be correct; the resulting output file must be hand-edited to check for this.

−d info_file Specifies the file containing information on how to build and name protons. The
default name is PROT ON_INFO. This information used to determine where on
the amino acids the protons should be placed. The file provided handles funny
Amber residue names like HIE, HIP and HID and HEM. Other files provided

2/28/02

protonate Page 269

include PROT ON_INFO.Brook, which uses Brookhaven proton naming conven-
tion (such as 1HB, etc.), and PROT ON_INFO.oldnames, which uses old amber
names. For example, to take an Amber pdb file and convert to the Brookhaven
naming convention, set -d PROT ON_INFO.Brook.

Output to LOGFILE includes matches of protons the program builds with any
found in the input file, plus a list of any input protons that could not be matched.
Questionable matches are flagged and should be checked manually.

BUGS
Format of the PROT ON_INFO file is not obvious unless you have read the code.

Methyl protons are built in a staggered conformation; hydroxyl protons in a arbi-
trary (and generally sub-optimal) conformation. A program likepol_h or its
equivalent should be used (if desired) to place polar hydrogens on LYS, SER,
THR, and SER residues.

HIS in the input file is assumed to be HID. Users should generally explicitly fig-
ure out the desired protonation state for histidines.

No attempt is made to identify heavy atoms in the input file that have two-letter
element names; this means that Brookhaven-style output may require some hand-
editing if atoms like calcium or iron are present.

It is assumed that the alternate conformer flag in column 17 of the PDB file is
either blank, or A. The program needs to be recompiled to change this; perhaps
this should become an input option.

2/28/02

pol_h and gwh Page 270

14.4. pol_h and gwh

NAME
pol_h − set positions of polar hydrogens in proteins
gwh − set positions of polar hydrogens onto water oxygen positions

SYNOPSIS

pol_h [-p <prmtop-file>] [-w <water-position-file>] < input-pdb-file

> output-pdb-file

gwh [-p <prmtop>] [-w <water.pdb>] [-c] [-e] < input_pdb_file

> output_pdb_file

DESCRIPTION
The programpol_H resets positions of polar hydrogens of protein residues (Lys,
Ser, Tyr and Thr), by optimizing simple electrostatic interactions. If the-w flag is
set, the program reads water oxygen positions from the filewater-position-file,
and uses these as well to help fix hydrogen positions.

The programgwhsets positions of water hydrogens onto water oxygen positions
that may be present in PDB files, by optimizing simple electrostatic interactions.
If the -w flag is set, the program reads water oxygen positions from the file
water-position-file, rather than the default namewatpdb. If -c is set, a constant
dielectric will be used to construct potentials, otherwise the (default) distant-
dependent dielectric will be used. If-e is set, the electrostatic potential will be
used to determine which hydrogens are placed first; otherwise, a distance crite-
rion will be used.

Accuracy of pol_h & gwh:

* In the following the results for BPTI and RSA(ribosuclease A) are

given together with those of Karplus(1) and Ornstein(2) groups.

In the case of Ornstein’s method, it handles only some of hydrogens

in question and therfore I normalized(scaled) their results using

expected values for random generation. The rms deviation from the

experimental positions (neutron difraction) and the number of

hydrogens are shown below.

BPTI Lys Ser Tyr Thr Wat

--

of H 12 1 4 3 112 (4˜)

Pol_H 0.39 0.36 1.08 0.20 0.98(0.38)

Karplus 0.25 0.71 0.81 0.19 - (0.35)

Ornstein 0.22 0.96 0.00 0.07 -

Ornstn(scaled) 0.51 0.96 1.28 0.07 (1.17)ˆ

--

˜internal waters. ˆby random generation

2/28/02

pol_h and gwh Page 271

RSA Lys Ser Tyr Thr Wat

--

of H 30 15 6 10 256

GuesWatH 0.61 0.96 1.22 0.96 0.98

Karplus 0.60 0.98 0.60 1.12 1.20

Ornstein 0.20 0.61 0.60 0.30 -

Ornstn(scaled) 0.49 0.89 0.76 0.93 (1.14)ˆ

--

ˆby random generation

1) A. T. Brunger and M. Karplus, Proteins, 4, 148 (1988).

2) M. B. Bass,,, R. L. Ornstein, Proteins, 12, 266 (1992).

* The accuracies seem to be similar among three approaches

if scaled values of Ornstein’s data are considered.

FILES Default for <prmtop-file> is "prmtop". The input-pdb-file must have been gener-
ated by LEaP or ambpdb,i.e. it must have exactly the same atoms (in the same
order) as the prmtop file.

2/28/02

intense Page 272

14.5. intense

NAME
intense − compute NOESY intensities from a structure

SYNOPSIS
intense -taucrot._corr._time,ns -taummixing_time,sec.

[-taumetvalue,MHz -omegavalue,ns
-leakvalue,sec-1 -cutoff cutoff
-p pdb_file -i output_intensity_file
-c output_shift_skeleton-s smatrix_file]

DESCRIPTION
Intensetakes a structure from a pdb file as input, and outputs a list of NOESY
intensities, suitable for input to other programs such asspectrum. The source
code is in thesrc/nmr_aux/ directory.

The input pdb file must include all hydrogens that you want to include in the spin
system. If a phe or tyr residue exists, the order of the hydrogen names must be
HD1, HE1, HZ (or HOH), HE2, HD2. IUPAC-IUB names for methyls are
required for them to be properly identified. The command line also must include
rotational correlation time and a mixing time.

All intensities greater thecutoff (default 0.0005) will be printed in the output
intensity file. OMEGA (spectrometer frequency, default 500 MHz) and
TA UMET (correlation time for methyl jump motion, default 0.001 ns) are dis-
cussed in the Sander documentation.

A "leakage rate" can be added to diagonal elements of the rate matrix to simulate
relaxation caused by mechanisms other than dipolar relaxation with other pro-
tons. This is accomplished via the "-leak" flag, followed by the leakage rate in
sec**-1.

If present, the S-matrix file will be read and used instead of computing distances
from the pdb file; any matrix elements not present in thesmatfilewill be esti-
mated from the distances in the pdb file. The format of thesmatfileis a namelist
"smat", containing the two-dimensional variable "s". Indices of s are the absolute
proton numbers, i.e. those in the pdb file.

The outputcshfile contains the atom names in the proper order for providing
chemical shift information to the next program,spectrum.Edit this file to put the
chemical shifts in the first 15 columns. If you have already put your chemical
shift information into a database of the format support by Garry Gippert, then the
script /case/nmr/spectrum/shiftconvwill take the skeleton file thatintensemakes
and insert the proper shifts for you. See that shell script for instructions on using
it.

Default file names arepdbfile, intfile, smatfile, andcshfile.

SEE ALSO
These programs are based on the "remarc" codes in Amber 4.0.

DIAGNOSTICS
File names, correlation and mixing times and number of protons are output to

2/28/02

intense Page 273

stderr. An error message is generated if the input pdb file has more than 750 pro-
tons or more than 1500 total atoms; the program needs to be recompiled after
changing the appropriate variables in the "nmr.h" file.

BUGS
Format of the output file should be expanded to allow the parameters used to be
embedded as comments.

If a tyrosine is present, the proton HOH must be present, even if this is a D20
simulation in which that proton has been exchanged away. The work-around is
to include HOH, but with very large coordinates (e.g. 999.,999.,999) so that it
won’t contribute to the spin systems. Other exchanged protons can be left out, or
entered as "D...".

2/28/02

spectrum Page 274

14.6. spectrum

NAME
spectrum − compute smx format file from the output ofintense

SYNOPSIS
spectrum [-c chemical-shift-file-i intense-file-s smx-file-s1min omega1-min
-s1max omega1-max-s2min omega2-min-s2max omega2-max-hwidth half-
width]

DESCRIPTION
Spectrumtakes the output of theintenseprogram (q.v.) plus information on
chemical shifts and produces an output "smx" format spectrum that ranges from
s1min to s1max and from s2min to s2max. The source code is in the
src/nmr_aux/ directory.

Peaks are assigned a half-width given by hwidth. The defaults are 0 to 10 ppm in
each direction, with a half width of 0.05 ppm. Default filenames arecshfile, int-
file andsmxfile.smx. The output file is a 512 x 512 real smx file that should be
acceptable for viewing or processing byftnmr. Since a square matrix is first set
up, and then converted to the funny block smx format, it should be relatively easy
to modify this program to accommodate other nmr analysis packages, or other
plotting programs, etc. To accommodate the default contour levels inftnmr, the
peaks are multiplied by 10**7.

The program is currently configured for a maximum of 900 protons. This can
easily be changed by modifying parameter statements at the beginning of the pro-
gram.

SEE ALSO
intense
Sample calculation is in/case/nmr/spectrum/example.

BUGS
Only 512 x 512 spectra can be output. This should not be too hard to fix with a
code hack.

The width of the peaks must be the same in each direction, and the same for all
peaks.

The header information thatftnmr uses is not fully documented, but spectrum
will set up some of the important ones: it assumes a spectral frequency of 500.00
MHz in each dimension, sets up the proper spectral width and reference points
(referenced at the edge of the spectrum) and sets the axis type to "ppm". A sim-
ple revision could make the spectrometer frequency an input variable.

2/28/02

fantasian Page 275

14.7. fantasian

A program to evaluate magnetic anisotropy tensor parameters

Ivano Bertini

Depart. of Chemistry, Univ. of Florence, Florence, Italy

e-mail: bertini@risc1.lrm.fi.cnr.it

INPUT FILES:

Observed shifts file (pcshifts.in):

1st column --> residue number

2nd column --> residue name

3rd column --> proton name

4th column --> observed pseudocontact shift value

5th column --> multiplicity of the NMR signal (for example

it is 3 for of a methyl group)

6th column --> relative tolerance

7th column --> relative weight

Amber pdb file (parm.pdb):coordinates file in PDB format. If you need to use a solution NMR
family of structures you have to superimpose the structures before to use them.

OUTPUT FILES:

Observed out file (obs.out):This file is built and read by the program itself, it reports the data
read from the input files.

output file (res.out):The main output file. In this file the result of the fitting is reported. Using
fantasian it is possible to define an internal reference system to visualize the orientation of the
tensor axes. Then in this file you can find PDB format lines (ATOM) which can be included in a
PDB file to visualize the internal reference system and the tensor axes. In the main output file all
the three equivalent permutations of the tensor parameters with respect to the reference system
are reported. The summary of the minimum and maximum errors and that of errorsˆ2 are also
reported.

Example files: in the directory example there are all the files necessary to run a fantasian calcula-
tion:

fantasian.com --> run file

pcshifts.in --> observed shifts file

parm.pdb --> coordinate file in PDB format

obs.out --> data read from input files

res.out --> main output file

2/28/02

fantasian Page 276

15. Anal

Usage:

anal [-O] -i analin -o analout -p prmtop -c inpcrd [-ref refc]

−O Overwrite output files if they exist.

15.1. Introduction
This is the energy analysis module of AMBER. Its purpose is to do energetic analyses of

individual structures. The key function of this program is decomposition of the energy among
different groups of atoms in order to find the interaction energies between different parts of the
system. The program puts those atoms which are not in explicitly defined groups into a separate
group. In the case of a belly or partial minimization the unfrozen part of the system can be
defined as the desired groups and the frozen part will be automatically taken by the program as an
additional group.

15.2. Files

analin 5 Input control data for the analysis run

analout 6 Output results

prmtop 20 Input Molecular topology file from PARM

inpcrd 21 Input Coordinates to be analyzed

refc 24 Input positional constraint coordinates

15.3. Input description

- 1 - TITLE

FORMAT(20A4)

TITLE Title for identification.

- 2 - NTX , NTXO , NRC , NRCX , NGRPX , KFORM, FORMAT(6I)

NTX Format of coordinates.

= 1 Formatted (inpcrd, unit 21)

= 2 Unformatted (inpcrd, unit 21)

2/28/02

ANAL Page 277

NTXO Read but not used

NRC Option to read position constraints.

= 0 no constraints

= 1 constrained minimization

The atoms to be constrained are read as groups with

different harmonic force constants for each group.

Consult the section on GROUP in the Appendices for

group specification format.

When using positional constraints, the constrained

groups are given first in the group input followed

by the groups for energy analysis.

NRCX Format of constraint coordinates. The constraint

coordinate file has the same organization as the structure

coordinates.

= 0 Formatted (refc, unit 24)

= 1 Binary (refc, Unit 24)

NGRPX Maximum number of groups that the structure can be

divided into for analysis. Note that if any atoms are not

explicitly included in a group, they will automatically

be put in an additional group.

= 0 Default = 70

= N Structure may be partitioned into N different groups

KFORM The Flag for the type of Topology File

= 0 Binary (prmtop, unit 20)

= 1 Formatted (prmtop, unit 20)

- 3 - NTB , BOX(1) , BOX(2) , BOX(3) , BETA

FORMAT(I,4F)

NTB Flag for periodic boundary conditions.

(not yet operational)

=-n Periodicity is applied. Box is truncated octahedron

(BETA = 90)

= 0 No periodicity is applied

=+n Periodicity is applied. Box is rectangular or monoclinic

depending on the value of BETA

BOX(1..3) Lengths of the edges of the periodic box

2/28/02

ANAL Page 278

BETA Angle between the X- and Z- axes of the box in degrees.

the Y- axis is assumed to be orthogonal to the other

axes. (0 < BETA < 180)

- 4 - NTF , NTID , NTN , NTNB , NSNB , IDIEL, FORMAT(6I)

NTF Flag for force evaluation.

= 1 complete interaction is calculated

= 2 bond interactions involving H-atoms omitted

= 3 all the bond interactions are omitted

= 4 angle involving H-atoms and all bonds are omitted

= 5 all bond and angle interactions are omitted

= 6 dihedrals involving H-atoms and all bonds and all angle

interactions are omitted

= 7 all bond, angle and dihedral interactions are omitted

= 8 all bond, angle, dihedral and non-bonded interactions

are omitted

NTID Flag for improper dihedral contribution (read but not used).

NTN Read but not used

Note: non-bonded interactions are now always calculated

using a residue based cutoff. The nb pairs are stored as

residue pairs. This uses substantially less memory than

the atom pairlist in the minimizer.

NTNB Read but not used

NSNB Read but not used

IDIEL Flag for the type of dielectric function to be used in

calculating the electrostatic energy.

= 0 distance dependent dielectric function

= 1 constant dielectric function

- 5 - CUT , SCNB , SCEE , DIELC, FORMAT(4F)

2/28/02

ANAL Page 279

CUT The cutoff distance for the non-bonded pairs.

SCNB 1-4 vdw interactions are divided by SCNB.

if SCNB .le. 0.0 then SCNB = 2.0

SCEE 1-4 electrostatic interactions are divided by SCEE

if SCEE .le. 0.0 then SCEE = 2.0

DIELC Dielectric multiplicative constant for the electrostatic

interactions. If DIELC .le. 0.0 then DIELC = 1.0. DIELC

and IDIEL are coupled. For example to obtain a dielectric

’constant’ of 4rij set DIELC=4 and IDIEL=0.

- 6 - Printout of energies beyond specified values. You

must use the ENERGY keyword to obtain output.

IMAX , EMAX(I) , I = 1, 9, FORMAT(I,9F)

IMAX Flag for printing the energy contributions.

= 0 no printing

= 1 energy contributions will be printed

EMAX(1) All the bonds whose energy contribution is greater

than EMAX(1) will be printed.

EMAX(2) All the angles whose energy contribution is greater

than EMAX(2) will be printed.

EMAX(3) All the dihedrals whose energy contribution is

greater than EMAX(3) will be printed.

EMAX(4) All the 1-4 vdw whose energy contribution is greater

than EMAX(4) will be printed.

EMAX(5) All the 1-4 eel whose energy contribution is greater

than EMAX(5) will be printed.

EMAX(6) All the vdw nb pairs whose energy contribution is

greater than EMAX(6) will be printed.

EMAX(7) All the eel nb-pairs with absolute value of energy

greater than EMAX(7) will be printed.

EMAX(8) All the H-bond pairs whose energy contribution is

greater than EMAX(8) will be printed.

2/28/02

ANAL Page 280

EMAX(9) All the constrained atoms whose energy contribution

is greater than EMAX(9) will be printed.

- 7 - The control for doing the desired options. The only

currently-supported control word is ENERGY.

IOPT, FORMAT(A)

IOPT The control word for the option.

’ENERGY’ Energy decomposition into groups

’STOP’ Control to terminate the run

ENERGY

Parts of the molecule for which interaction energies

are to be calculated are entered in GROUP format. See

the section on GROUP in the Appendices for details.

Groups are read sequentially in any order. Each group

is terminated by an "END" card.

The ENERGY option is terminated by another "END" card.

2/28/02

Appendix A: NAMELIST Page 281

16. Appendices

16.1. Appendix A: Namelist Input Syntax

Namelist provides list-directed input, and convenient specification of default values. It
dates back to the early 1960’s on the IBM 709, but was regrettably not part of Fortran 77. It is a
part of the Fortran 90, and is supported as well by most Fortran 77 compilers (including g77).

Namelist input groups take the form:

&name

var1=value, var2=value, var3(sub)=value,

var4(sub,sub,sub)=value,value,

var5=repeat*value,value,

&end

Note the initial space before the "&"s. The variables must be names in the Namelist variable list.
The order of the variables in the input list is of no significance, except that if a variable is speci-
fied more than once, later assignments may overwrite earlier ones. Blanks may occur anywhere
in the input, except embedded in constants (other than string constants, where they count as ordi-
nary characters). A comma (or the terminal &END) must follow each constant; end-of-line does
NOT constitute a valid constant separator.

The NAMELIST name &name must ALWA YS begin in column 2 of an input record. The
ampersand sign in &name and &end may optionally be replaced by a dollar sign, and the word
"end" after the dollar sign may optionally be omitted. Column 1 of all input records is ignored,
and only columns 2..80 are examined (in some implementations, a non-blank in the first column
comments out the whole line). The terminal &end may occur anywhere in the input character
stream (ignoring column 1 of course); it need not begin in column 2.

Letter case is ignored in all character comparisons, but case is preserved in string constants.
An exception is that the namelist name itself must appear in lower case, e.g.&cntrl , not
&CNTRL. String constants must be enclosed by single quotes (’). If the text string itself contains
single quotes, indicate them by two consecutive single quotes, e.g. C1’ becomes ’C1’’’ as a char-
acter string constant.

Scalar variables may NOT be subscripted, and must be followed by 0 or 1 constant.

Array variables may be subscripted or unsubscripted. An unsubscripted array variable is the
same as if the subscript (1) had been specified. If a subscript list is given, it must have either one
constant, or exactly as many as the number in the declared dimension of the array. Bounds
checking is performed for ALL subscript positions, although if only one is given for a multi-
dimension array, the check is against the entire array size, not against the first dimension. If more
than one constant appears after an array assignment, the values go into successive locations of
the array. It is NOT necessary to input all elements of an array.

Any constant may optionally be preceded by a positive (1,2,3,..) integer repeat factor, so
that, for example, 25*3.1415 is equivalent to twenty-five successive values 3.1415. The repeat
count separator, *, may be preceded and followed by 0 or more blanks. Valid LOGICAL con-
stants are 0, F, .F., .FALSE., 1, T, .T., and .TRUE.; lower case versions of these also work.

2/28/02

Appendix B: GROUP Page 282

16.2. Appendix B: GROUP Specification

Entering Group Information

This section describes the format used to define groups of atoms in various AMBER pro-
grams. Insander, a group can be specified as a movable "belly" while the other atoms are fixed
absolutely in space (aside from scaling caused by constant pressure simuation), and/or a group of
movable atoms can independently restrained (held by a potential) at their positions. Inanal,
groups can be defined for energy analysis.

Except in the analysis module where different groups of atoms are considered with different
group numbers for energy decomposition, in all other places the groups of atoms defined are
considered as marked atoms to be included for certain types of calculations. In the case of con-
strained minimization or dynamics, the atoms to be constrained are read as groups with a differ-
ent weight for each group.

Reading of groups is performed by the routine RGROUP and you are advised to consult it
if there is still some ambiguity in the documentation.

Input description:

- 1 - Title

format(20a4)

ITITL Group title for identification.

Setting ITITL = ’END’ ends group input.

--

- 1A - Weight

This line is only provided/read when using GROUP input to

define restrained atoms.

format(f)

WT The harmonic force constants in kcal/mol-A**2 for the group

of atoms for restraining to a reference position.

--

- 1B - Control to define the group

KTYPG , (IGRP(I) , JGRP(I) , I = 1,7)

format(a,14i)

KTYPG Type of atom selection performed. A molecule can be

2/28/02

Appendix B: GROUP Page 283

defined by using only ’ATOM’ or ’RES’, or part of the

molecule can be defined by ’ATOM’ and part by ’RES’.

’ATOM’ The group is defined in terms of atom numbers. The atom

number list is given in igrp and jgrp.

’RES’ The group is defined in terms of residue numbers. The

residue number list is given in igrp and jgrp.

’FIND’ This control is used to make additional conditions

(apart from the ’ATOM’ and ’RES’ controls) which a given

atom must satisfy to be included in the current group.

The conditions are read in the next section (1C) and are

terminated by a SEARCH card.

Note that the conditions defined by FIND filter any set(s) of atoms

defined by the following ATOM/RES instructions. For example,

-- group input: select main chain atoms --

FIND

* * M *

SEARCH

RES 1 999

END

END

’END’ End input for the current group. Followed by either another

group definition (starting again with line 1 above), or by a second

’END’ "card", which terminates all group input.

IGRP(I) , JGRP(I)

The atom or residue pointers. If ktypg .eq. ’ATOM’ all

atoms numbered from igrp(i) to jgrp(i) will be put into

the current group. If ktypg .eq. ’RES’ all atoms in the

residues numbered from igrp(i) to jgrp(i) will be put

into the current group. If igrp(i) = 0 the next control

card is read.

It is not necessary to fill groups according to the

numerical order of the residues. In other words, Group 1

could contain residues 40-95 of a protein, Group 2 could

contain residues 1-40 and Group 3 could contain residues

96-105.

If ktypg .eq. ’RES’, then associating a minus sign with

igrp(i) will cause all residues igrp(i) through jgrp(i)

to be placed in separate groups.

2/28/02

Appendix B: GROUP Page 284

In the analysis modules, all atoms not explicitly defined

as members of a group will be combined as a unit in the

(n + 1) group, where the (n) group in the last defined

group.

--

- 1C - Section to read atom characteristics

***** Read only if KTYPG = ’FIND’ *****

JGRAPH(I) , JSYMBL(I) , JTREE(I) , JRESNM(I)

format(4a)

A series of filter specifications are read. Each filter consists

of four fields (JGRAPH,JSYMBL,JTREE,JRESNM), and each filter is placed

on a separate line. Filter specification is terminated by a line with

JGRAPH = ’SEARCH’. A maximum of 10 filters may be specified for a

single ’FIND’ command.

The union of the filter specifications is applied to the atoms defined

by the following ATOM/RES cards. I.e. if an atom satisfies any of the

filters, it will be included in the current group. Otherwise, it is not

included. For example, to select all non main chain atoms from residues

1 through 999:

-- group input: select non main chain atoms --

FIND

* * S *

* * B *

* * 3 *

* * E *

SEARCH

RES 1 999

END

END

’END’ End input for the current group. Followed by either another

The four fields for each filter line are:

JGRAPH(I) The atom name of atom to be included. If this and the

following three characteristics are satisfied the atom is

included in the group. The wild card ’*’ may be used to

to indicate that any atom name will satisfy the search.

JSYMBL(I) Amber atom type of atom to be included. The wild card

’*’ may be used to indicate that any atom type will

2/28/02

Appendix B: GROUP Page 285

satisfy the search.

JTREE(I) The tree name (M, S, B, 3, E) of the atom to be included.

The wild card ’*’ may be used to indicate that any tree

name will satisify the search.

JRESNM(I) The residue name to which the atom has to belong to be

included in the group. The wild card ’*’ may be used to

indicate that any residue name will satisify the search.

--

Examples:

The molecule 18-crown-6 will be used to illustrate the group options. This molecule is
composed of six repeating (-CH2-O-CH2-) units. Let us suppose that one created three residues
in the PREP unit: CRA, CRB, CRC. Each of these is a (-CH2-O-CH2-) moiety and they differ by
their dihedral angles. In order to construct 18-crown-6, the residues CRA, CRB, CRC, CRB,
CRC, CRB are linked together during the LINK module with the ring closure being between
CRA(residue 1) and CRB(residue 6).

Input 1:

Title one

RES 1 5

END

Title two

RES 6

END

END

Output 1: Group 1 will contain residues 1 through 5 (CRA, CRB, CRC, CRB, CRC) and Group
2 will contain residue 6 (CRB).

Input 2:

Title one

RES 1 5

END

Title two

ATOM 36 42

END

END

Output 2: Group 1 will contain residues 1 through 5 (CRA, CRB, CRC, CRB, CRC) and Group
2 will contain atoms 36 through 42. Coincidentally, atoms 36 through 42 are also all the atoms in
residue 6.

Input 3:

2/28/02

Appendix B: GROUP Page 286

Title one

RES -1 6

END

END

Output 3: Six groups will be created; Group 1: CRA, Group 2: CRB,..., Group 6: CRB.

Input 4:

Title one

FIND

O2 OS M CRA

SEARCH

RES 1 6

END

END

Output 4: Group 1 will contain those atoms with the atom name ’O2’, atom type ’OS’, tree name
’M’ and residue name ’CRA’.

Input 5:

Title one

FIND

O2 OS * *

SEARCH

RES 1 6

END

END

Output 5: Group 1 will contain those atoms with the atom name ’O2’, atom type ’OS’, any tree
name and any residue name.

2/28/02

Appendix C: Parameter Development Page 287

16.3. Appendix C: Parameter Development

Allison Howard and Bill Ross

How should one proceed to develop parameters for new molecules or fragments? The gen-
eral principle is to use analogy as much as possible. The amount of effort that should be
expended is related to the scientific question being asked. To accurately calculate thermodynamic
interactions with water or a macromolecule, one needs the best parameters that can be obtained.
If only qualitatively reasonable geometries are needed, less work may be required. Van der
Waals, bond, angle, torsion and improper torsion parameters are discussed; the philosophy of
derivation of specific atomic charges for a new residue is given in Appendix D.

Atom types. The first step in parameter development is to make a two-dimensional sketch
of the fragment for which parameters are needed, and then to assign atom types to the atoms. The
comments in the first section of theparm94.dat file describe the hybridization and other
attributes of the atom types for the 1994 force field [13]. This approach may be augmented by
looking at the atom types in the existing residues in the filesall_*94.in . For example, in
pyridine the nitrogen would be assigned the same type (NC) as N1 and N3 in adenine. Note that
an atom type is intrinsic to an array of distance, angle, and dihedral parameters involving the
types of the neighboring atoms, as well as having its own van der Waals (VDW) parameters, and,
of course, atomic mass (charge is not fixed per atom type). Therefore, if a new atom type is
required, the first step is to attempt to reason by analogy and clone as many of the pre-existing
parameters as possible to account for the environment of the new atom. Here it is instructive to
consider the variability of the existing parameters, which tend to be duplicated over various com-
binations of atoms. This step may also be required if old atom types are used in a new topologi-
cal relation.

For example, consider the oxygen of a sulfoxide or a sulfone:

R R
| |

:S=O O=S=O
| |
R’ R’

We would expect the van der Waals parameters of this oxygen to be similar to those of a carbonyl
oxygen of the force field (type "O"):

R
\

C=O
/

R’

or to those of carboxyl or phosphate oxygens (type "O2" in both examples)

2/28/02

Appendix C: Parameter Development Page 288

R
|

O2 OS
/ |

R - C O2 - P - O2
\ |

O2 OS
|
R’

because VDW radii are dominated by the number of electrons in an atom and are not very sensi-
tive to chemical environment. In fact, the VDW parameters for types "O" and "O2" are identical.
Can one of these types be used for the oxygen in sulfoxide/sulfone? The environment must now
be considered. If no suitable analogy can be found, a new atom type must be created and a com-
plete set of bond, angle, and dihedral parameters for its neighbors added to the force field. In this
case, both sulfoxide and sulfone oxygens are substituents of tetrahedral sulfurs rather than trigo-
nal planar carbons, so the phosphate oxygen case makes an appealing analogy. We then check
whether any existing bond, angle or dihedral parameters involve a S="O2" bond, and if they do,
we check that those parameters are appropriate forthis case of an S=O bond. But there are no
such parameters − it is therefore reasonable to extend the use of type "O2" for this case. (Had
there been inappropriate S="O2" parameters, we might want to either make a new sulfur type, or
make a new oxygen type starting with the VDW parameters of "O" and "O2".) We continue dis-
cussion of bond and angle parameters for these example fragments below.

van der Waals parameters.What if no atom type lends itself to adaptation? When creat-
ing a new type, the first thing one must consider is VDW parameters. As illustrated above, for
organic compounds these parameters may be straightforward to find by analogy based on element
and bond order alone. Monoatomic ions, however, do not present such analogies in the AMBER
force field and are discussed in more detail as an example.

The shape of the VDW potential for a given atom type is specified in terms of the distance
between two atoms of the same type at the minimum energy point. Half the interatomic distance
at that point is treated as the basic radius, or R*, parameter for that type. The form for the radial
potential for two atoms is the sum of the R* values of their types. The potential well depth ("e")
of the minimum energy point between two atoms of the same type is combined with the potential
of another atom type by taking the root of the product. (Other parametric forms can be used
which tend to have different type-type "combining rules".)

The simplest approach to deriving VDW parameters is to match a relevant experimental
determination of the size of the atom in question. One source of such measurements is diffraction
data. The sum of metal and oxygen Pauling radii tends to be 3% smaller than indicated by water-
ion neutron and X-ray diffraction data for Li+ and Na+ ions, 2% smaller than for K+, and 1%
smaller than for Rb+ and Cs+ [114]. Another source of ion "size" information is crystallographic
studies of ion complexes [115]. Since van der Waals parameters consist of two terms, the param-
eters thate.g.yield a given first peak of the radial distribution of the distance between two types
of atoms are not unique. Another variety of experimental data that can contribute to parameteri-
zation is the free energy of solvation in water or another relevant solvent. However, it is still not
clear whether the combination of experimental size and solvation free energy is sufficient to
determine unique R* and "e" parameters for an atom in relation to an existing type. A further
complication arises because an atom type may come into contact with more than one other type,
and nothing in principle guarantees that VDW parameters for a group of types can be fitted to

2/28/02

Appendix C: Parameter Development Page 289

yield uniformly correct pairwise potentials. Therefore it is important to choose parameters consis-
tent with the most significant atom types that the new type will come in contact with. To a first
approximation, atom types that tend to be oppositely charged, if present, are of most interest. In a
particularly important case for ions, the TIP water models (as well as some other waters) have a
spherical van der Waals potential centered on the water oxygen (type "OW"), which is somewhat
inflated to enclose the hydrogen atoms in the molecule [23]. Thus a cation that has been parame-
terized to give a correct ion-"OW" radial distance distribution function in such a water model will
be "smaller" and come in closer contact with neighboring atoms if it is bound in a molecule con-
sisting of AMBER atoms.

Moreover, remembering that different pairwise combining rules are in use in the modeling
community, parameters from one convention must be adapted to yield the same results for a given
pair of types in another scheme. Thus it was necessary to adapt the monovalent cation parameters
of A° qvist [21] (found inparm94.dat andparm91.dat) for AMBER so that the ion-water
combinedpotential gav e the same optimal distance as with the combining rules used by A° qvist.
Matching the ion size in the environment seems to be sufficient in the case with small
monoatomicmonocations; the default has traditionally been to use a somewhat arbitrary well
depth (epsilon) of 0.1 kcal/mol, characteristic of a rather nonpolarizable atom, and fit an R*
parameter (see the Ross and Hardin reference). For the multivalent ions, different further
approaches may be considered to capture the quasi-bonding electron mobility, including the use
of explicit bonds or hydrogen bonding terms (see the Vedani and Huhta reference).

We hav e also discussed the derivation of van der Waals parameters for hydrogen in different
bonding environments [116]. Using ab-initio calculations to study the interaction between water
and various hydrogens, we found that a reduction in R* was required for hydrogens attached to
carbons with adjacent electronegative atoms. This trend is nicely paralleled in the progessively
smaller R* for hydrogens attached to carbon (HC), nitrogen (H), and water oxygen (HW).

Bond and angle parameters.Having chosen or created one or more atom types and sets of
van der Waals parameters, the bond, angle and dihedral parameters must be created. Equilibrium
bond lengths and angles may be obtained from tabulations of experimental data in the literature
[117,118]. Initial bond and angle force constants may be chosen based upon analogy to similar
parameters in the force field or using the method of Hopfinger and Pearlstein [119]. Cannon
gives an example of extending the Weineret al. force field to guanosine triphosphate and analogs
[120]. The AMBER-1994 force field contains a limited number of unique bond and angle force
constants and therefore selection by analogy is a feasible starting point. Returning to our sulfox-
ide/sulfone example, we find that the only existing bonds involving O2 are:

Kbond Rbond

C -O2 656.0 1.250 JCC,7,(1986),230; GLU,ASP

O2-P 525.0 1.480 JCC,7,(1986),230; NA PHOSPHATES

and it would be reasonable to use the O2-P force constant with a bond distance from the litera-
ture. Similarly, it would be reasonable to use the same angle bending parameters as for phos-
phates:

Ktheta(O2-P-O2) = Ktheta(O-S-O)

Ktheta(O2-P-OS) = Ktheta(R-S=O)

Ktheta(OS-P-OS) = Ktheta(R-S-R)

Unless only crude parameters are desired, one should check the force constants by means of

2/28/02

Appendix C: Parameter Development Page 290

normal mode calculations if spectroscopic measurements are available for comparison; such cal-
culations on N-methylacetamide are described in the Weineret al. JA CS 1984 paper. The bond
and angle parameters are the primary determinants of the high and middle frequency vibrational
modes of a molecule. For applications which require the highly accurate reproduction of vibra-
tional frequencies, it is necessary to use a force field which includes higher order terms (anhar-
monicity) and cross-terms. For modeling the structures and interactions of molecules which are
not highly strained, however, the simple harmonic approximation used in AMBER appears to be
quite adequate.

Dihedral parameters. The dihedral parameters, in conjunction with the atomic charges
and van der Waals parameters, are the primary determinants of the relative conformational ener-
gies of a molecule. The AMBER parameters IDIVF, PK, PN, and PHASE are used to define the
torsional potential energy function. Each bonded series of atoms I-J-K-L must have at least one
set of these dihedral parameters in the force field (just as every bonded pair I-J or triplet I-J-K
must have bond or angle parameters, except that for dihedrals multiple terms may be used). The
torsional energy function formula is:

Etors = (PK / IDIVF) * (1 + cos(PN * phi - PHASE))

Let us look at a few examples in order to illustrate the nature of the dihedral parameters.
For our first example (Figure 1), if atoms J and K are sp3 carbons (type CT) as in the molecule
ethane (H3C-CH3), then the intrinsic barrier to rotation about the J-K bond is on the order of 3
kcal/mol. We must decide whether to make this a generic potential for torsions about CT-CT
bonds (X-CT-CT-X), or to make it explicit torsion restricted to HC substituents (HC-CT-CT-HC).

Figure 1

2/28/02

Appendix C: Parameter Development Page 291

This choice determines IDIVF, which is the total number of torsions about a single bond that the
potential applies to. If all atoms are explicit, then IDIVF=1 and we divide the total potential for
the bond (3.0 in this case) by the number of torsions involved; since each substituent ’sees’ the
opposite 3 substituents, there are 3x3=9 torsions around the bond, as would be the case whenever
the central bond is between two sp3 atoms. If the generic representation is chosen, then the entire
potential is used and IDIVF=9. PK is equal to one-half of the barrier magnitude and would there-
fore be equal to 3.0 / 2.0 = 1.5 kcal/mol for the generic case, or 3.0 / 9 / 2.0 = 0.1667 for the spe-
cific case. The topology about the dihedral of interest has a three-fold periodicity (PN); that is,
there are three potential barriers as the C-C bond is rotated -180 to 180 degrees. These barriers
occur when the methyl hydrogens eclipse each other: at 0, -120, and 120 degrees. Since the dihe-
dral formula is a Fourier series truncated to a single cosine term, no phase shift would be needed
to reproduce the potential energy barriers and PHASE = 0 degrees. (PHASE = 0 degrees if an
energymaximumis at 0 degrees; PHASE = 180 degrees if an energyminimumis at 0 degrees.)
So we have:

PN = 3
PHASE = 0.0 degrees

for HC-CT-CT-HC:

IDIVF = 1
PK = 3.0 kcal/mol / 9 / 2.0 = 0.1667 kcal/mol

for X -CT-CT-X :

IDIVF = 9
PK = 3.0 kcal/mol / 2.0 = 1.5 kcal/mol

These same torsional parameters can be used for n-butane, and the results are in good agreement
with experiment and higher-level calculations for the relative energy oftransandgaucheminima
andcisandskewenergy barriers.

Consider now the molecule ethylene, H2C=CH2, whose dihedral potential energy is shown
in Figure 2.

The lowest-energy conformation of this molecule is planar with a two-fold (PN = 2), 60
kcal/mol barrier to rotation about the C=C bond. The barriers are found at dihedral angles of -90
and 90 degrees (energy minimum at 0 degrees), and can be reproduced by the truncated Fourier
series only if a phase shift of 180 degrees (PHASE = 180.0 degrees) is used.

PN = 2
PHASE = 180.0

specific:

IDIVF = 1
PK = 60.0 kcal/mol / 4 / 2.0 = 7.5 kcal/mol

generic:

2/28/02

Appendix C: Parameter Development Page 292

Figure 2

IDIVF = 4
PK = 60.0 kcal/mol / 2.0 = 30.0 kcal/mol

Finally, we examine a hypothetical molecule ZH2C-CH2Z, where Z represents an elec-
tronegative functional group. Let us imagine that we either have experimental data on the relative
conformational energies or we have simulated the rotational potential of this molecule with a
series of quantum mechanical calculations. In practice, this is only done for minimum and maxi-
mum energy conformations −trans, gauche+, gauche-, eclipsed, skew, etc. In our example, the
energy profile shows that thetrans conformation (Z-C-C-Z = 180 degrees) is about 0.5 kcal/mol
less stable than thegauche.

Before fitting the torsional parameters, we must generate the energy profile for the molecu-
lar mechanical nonbonded potential as was done for the quantum potential, subtract this curve
from the quantum curve, and fit the torsional potential to the difference potential.

Before these calculations can be done, atomic charges need to be calculated, also by fitting
to quantum mechanical results. The difference potential is then deconvoluted into Fourier series
terms (Figure 3) which give the force field parameters:

IDIVF PK PHASE PN
Z-CT-CT-Z 1 0.260 0 -3
Z-CT-CT-Z 1 0.384 0 -2
Z-CT-CT-Z 1 0.241 0 1

2/28/02

Appendix C: Parameter Development Page 293

Figures 3 and 4

which result in the total torsional potential shown in Figure 4. (In AMBER, PN is set to less than

2/28/02

Appendix C: Parameter Development Page 294

zero when additional terms remain to be read.)

Care must be taken when deconvoluting the torsional potential not to introduce spurious
minima or maxima into the rotational energy profile. The combined potential of the deconvoluted
parameters can be plotted directly by a graphing program, or the torsional energy profile can be
"empirically" generated at 20-30 degree intervals in AMBER.

In practice, such an elaborate Fourier series treatment may not be appropriate because (a)
the quantum mechanical treatment may not be accurate enough to warrant it, (b) one would rather
have a simpler torsional potential that is more consistent with the existing force field and (c) the
electrostatic potential fitting procedure may capture the torsional energy profile well enough so
that many terms are not needed. For example, in the case of 1,2-difluoroethane, the known
gauche tendency of the fluorines can be simulated by adding a twofold torsion

IDIVF PK PHASE PN
F-CT-CT-F 1 X 0 2

with "X" adjusted to make the total molecular mechanical energy of thegaucheconformation 1
kcal/mol lower than thetransconformation.

Improper torsions. Improper torsions are so named because the atoms involved are not
serially bonded; rather they are branched:

J
|
K

/ \
I L

Improper I-J- K -L

The convention is that the central atom is listed in the third position of the dihedral ("K" in the
figure). Improper dihedral potentials are sometimes necessary to reproduce out-of-plane bending
frequencies,i.e. they keep four atoms properly trigonal planar for a two-fold torsional potential
(PN=2). They are additionally used in the united-atom force field model when a carbon with an
implicit hydrogen is a chiral center; in effect they keep the position from inverting (PN=3).

The PHASE for improper torsions is always 180 degrees. Improper torsional parameters
listed in the force field file they can use wild-card specifications ("X") for the non-central atoms
(note that wild-card impropers must follow the explicit ones in the parm.dat force field file). In
LEaP, every atom with three substituents is matched against the impropers in the force field file,
and all matches are applied (discarding any wild-card terms if an explicit match is found). Thus
care must be taken that a new improper does not inadvertently match other cases. In both PLEP
and LEaP, an improper with no wild cards causes all wild-card-containing impropers to be
ignored. Except for not mixing wild-card with explicit cases, all improper terms that match a
given central atom are applied. In LEaP, if no match is found, no improper term is applied
(unlike bonds, angles and "proper" torsions, for which parametersmustexist).

Hydrogen bonding parameters. Unlike the previous AMBER force fields, the 1994 force
field does not include a 10-12 hydrogen bonding function. This function, however, is still sup-
ported by the software. When using the hydrogen bonding function, all relevant pairs of atom

2/28/02

Appendix C: Parameter Development Page 295

types need to have parameters. Note that if a pair of atom types has H-bond (10-12) parameters,
these will override any van der Waals (6-12) parameters for that pair.

16.4. Appendix D: Charge fitting philosophy

Wendy Cornell

The philosophy of the Kollman group (AMBER) has been that the accurate representation of
electrostatic interactions is crucial for a force field intended for application to biological
molecules. [113] We note that the choice of a particular force field should depend on the system
properties one is interested in. Some applications require more refined force fields than others.
Moreover, there should be a balance between the levels of accuracy or refinement of different
parts of a molecular model. Otherwise the computing effort put into a very detailed and accurate
part of the calculations may easily be wasted due to the distorting effect of the cruder parts of the
model.

The new charges which were developed for the 1994 force field are called RESP charges,
for Restrained ElectroStatic Potential fit. This modification of the original ESP method was
developed by Christopher Bayly [111,112]. The basic idea with electrostatic potential fit charges
is that a least squares fitting algorithm is used to derive a set of atom-centered point charges
which best reproduce the electrostatic potential of the molecule. In the AMBER charge fitting
programs, the potential is evaluated at a large number of points defined by 4 shells of surfaces at
1.4, 1.6, 1.8, and 2.0 times the VDW radii. These distances have been shown to be appropriate
for deriving charges which reproduce typical intermolecular interactions (energies and distances).
The dipole moment of the molecule is well reproduced.

Other programs have embedded the molecule in a cubic grid of points to evaluate the poten-
tial. We believe that assigning the points along the contours of the molecule provides a reason-
able sampling of the esp around each atom.

The value of the electrostatic potential at each grid point is calculated from the quantum
mechanical wav efunction. The charges derived using this procedure are basis set dependent. For
example, the Weineret al. force field employs STO-3G based charges, whereas the new Cornell
et al. 1994 force field uses charges derived using the 6-31G* basis set. The 6-31G* basis set is
bigger and, for the most part, "better." Because quantum mechanics calculations scale as the
number of basis functions to about the 2.7 power (HF as implemented in Gaussian92), the bigger
6-31G* basis set was prohibitively large for use in developing the earlier 1984/1986 force field.

The 6-31G* basis set tends to result in dipole moments which are 10-20% larger than gas
phase. This behavior is desirable for deriving charges to be used for condensed phase simulations
within an effective two-body additive model, where polarization is being represented implicitly.
In other words a molecule is expected to be more polarized in condensed phase vs. gas phase due
to many body interactions, so we "pre-polarize" the charges.

A study by St-Amantet al. calculated DFT charges for a number of small molecules and
found them to be smaller than HF/6-31G* derived ones [121]. DFT charges for methanol did not
reproduce the relative free energy of solvation of methanol. Such charges may be more appropri-
ate for use with a non-additive model, since the DFT model reproduced the gas phase dipole
moments very well.

2/28/02

Appendix D: Charge fitting philosophy Page 296

ESP fit charges have many advantages. They reproduce interaction energies well. They can
be calculated in a straightforward fashion. They hav e been shown to perform well at reproducing
conformational energies when used with an appropriate 1-4 electrostatic scale factor. The Cornell
et al.JA CS paper provides much of the validation of our new charge model. A study by Howard,
Cieplak, and Kollman [122] showed how ESP and RESP charges performed quite well at model-
ing the conformational energies of a series of 1,3-dioxanes.

It should be noted that Mulliken charges do NOT reproduce the electrostatic potential of a
molecule very well. Mulliken charges are calculated by determining the electron population of
each atom as defined by the basis functions. When the density is associated with the square of a
single basis function, that density is assigned to the atom associated with that basis function.
Similarly, if the density is associated with 2 basis functions which are on a common atom, the
density is assigned to that atom. The ambiguity arises when the density is associated with 2 basis
functions lying on different atoms. In that case the density is partitioned equally onto each atom.

16.5. Appendix E: parameter file format
Listed below is the "old" prmtop format. It can still be used in all Amber routines, and can

ev en still be generated in LEaP by the command:

set default oldPrmtopFormat on

The "new" format (introduced in Amber 7) is pretty much compatible with what is listed below.
However, each section now has two extra lines at the beginning: the first line begins with
"%FLAG ", followed by an identifier; the second line begins with "%FORMAT", followed by a
Fortran format string that is used to parse the following lines. The format given must provide
spaces between all entries, so that the file can be more easily read with a "C" program using
fscanf() . In addition, the very first line of the new format file begins with "%VERSION ",
followed by version and date information.

Although this sounds complicated, looking at an output from LEaP is probably the easiest
way to understand what is going on.

FORMAT(20a4) (ITITL(i), i=1,20)

ITITL : title

FORMAT(12i6) NATOM, NTYPES, NBONH, MBONA, NTHETH, MTHETA,

NPHIH, MPHIA, NHPARM, NPARM, NNB, NRES,

NBONA, NTHETA, NPHIA, NUMBND, NUMANG, NPTRA,

NATYP, NPHB, IFPERT, NBPER, NGPER, NDPER,

MBPER, MGPER, MDPER, IFBOX, NMXRS, IFCAP,

NEXTRA

NATOM : total number of atoms

NTYPES : total number of distinct atom types

2/28/02

File formats Page 297

NBONH : number of bonds containing hydrogen

MBONA : number of bonds not containing hydrogen

NTHETH : number of angles containing hydrogen

MTHETA : number of angles not containing hydrogen

NPHIH : number of dihedrals containing hydrogen

MPHIA : number of dihedrals not containing hydrogen

NHPARM : currently not used

NPARM : currently not used

NNB : number of excluded atoms

NRES : number of residues

NBONA : MBONA + number of constraint bonds

NTHETA : MTHETA + number of constraint angles

NPHIA : MPHIA + number of constraint dihedrals

NUMBND : number of unique bond types

NUMANG : number of unique angle types

NPTRA : number of unique dihedral types

NATYP : number of atom types in parameter file, see SOLTY below

NPHB : number of distinct 10-12 hydrogen bond pair types

IFPERT : set to 1 if perturbation info is to be read in

NBPER : number of bonds to be perturbed

NGPER : number of angles to be perturbed

NDPER : number of dihedrals to be perturbed

MBPER : number of bonds with atoms completely in perturbed group

MGPER : number of angles with atoms completely in perturbed group

MDPER : number of dihedrals with atoms completely in perturbed groups

IFBOX : set to 1 if standard periodic box, 2 when truncated octahedral

NMXRS : number of atoms in the largest residue

IFCAP : set to 1 if the CAP option from edit was specified

NEXTRA : number of "extra points" (atom type of EP)

FORMAT(20a4) (IGRAPH(i), i=1,NATOM)

IGRAPH : the user atoms names

FORMAT(5E16.8) (CHRG(i), i=1,NATOM)

CHRG : the atom charges. (Divide by 18.2223 to convert to units of

electron charge)

FORMAT(5E16.8) (AMASS(i), i=1,NATOM)

AMASS : the atom masses

FORMAT(12I6) (IAC(i), i=1,NATOM)

IAC : index for the atom types involved in Lennard Jones (6-12)

interactions. See ICO below.

FORMAT(12I6) (NUMEX(i), i=1,NATOM)

2/28/02

File formats Page 298

NUMEX : total number of excluded atoms for atom "i". See

NATEX below.

FORMAT(12I6) (ICO(i), i=1,NTYPES*NTYPES)

ICO : provides the index to the nonbon parameter

arrays CN1, CN2 and ASOL, BSOL. All possible 6-12

or 10-12 atoms type interactions are represented.

NOTE: A particular atom type can have either a 10-12

or a 6-12 interaction, but not both. The index is

calculated as follows:

index = ICO(NTYPES*(IAC(i)-1) + IAC(j))

If index is positive, this is an index into the

6-12 parameter arrays (CN1 and CN2) otherwise it

is an index into the 10-12 parameter arrays (ASOL

and BSOL).

FORMAT(20A4) (LABRES(i), i=1,NRES)

LABRES : the residue labels

FORMAT(12I6) (IPRES(i), i=1,NRES)

IPRES : the atom number of the first atom in residue "i"

FORMAT(5E16.8) (RK(i), i=1,NUMBND)

RK : force constant for the bonds of each type, kcal/mol

FORMAT(5E16.8) (REQ(i), i=1,NUMBND)

REQ : equilibrium bond length for the bonds of each type, angstroms

FORMAT(5E16.8) (TK(i), i=1,NUMANG)

TK : force constant for the angles of each type, kcal/mol A**2

FORMAT(5E16.8) (TEQ(i), i=1,NUMANG)

TEQ : the equilibrium angle for the angles of each type, degrees

FORMAT(5E16.8) (PK(i), i=1,NPTRA)

PK : force constant for the dihedrals of each type, kcal/mol

FORMAT(5E16.8) (PN(i), i=1,NPTRA)

2/28/02

File formats Page 299

PN : periodicity of the dihedral of a given type

FORMAT(5E16.8) (PHASE(i), i=1,NPTRA)

PHASE : phase of the dihedral of a given type

FORMAT(5E16.8) (SOLTY(i), i=1,NATYP)

SOLTY : currently unused (reserved for future use)

FORMAT(5E16.8) (CN1(i), i=1,NTYPES*(NTYPES+1)/2)

CN1 : Lennard Jones r**12 terms for all possible atom type

interactions, indexed by ICO and IAC; for atom i and j

where i < j, the index into this array is as follows

(assuming the value of ICO(INDEX) is positive):

CN1(ICO(NTYPES*(IAC(i)-1)+IAC(j))).

FORMAT(5E16.8) (CN2(i), i=1,NTYPES*(NTYPES+1)/2)

CN2 : Lennard Jones r**6 terms for all possible atom type

interactions. Indexed like CN1 above.

NOTE: the atom numbers in the arrays which follow that describe bonds,

angles, and dihedrals are obfuscated by the following formula (for

runtime speed in indexing arrays). The true atom number equals the

absolute value of the number divided by three, plus one. In the case

of the dihedrals, if the fourth atom is negative, this implies an

improper torsion and if the third atom is negative, this implies that

end group interactions are to be ignored. End group interactions are

ignored, for example, in dihedrals of various ring systems (to prevent

double counting) and in multiterm dihedrals.

FORMAT(12I6) (IBH(i),JBH(i),ICBH(i), i=1,NBONH)

IBH : atom involved in bond "i", bond contains hydrogen

JBH : atom involved in bond "i", bond contains hydrogen

ICBH : index into parameter arrays RK and REQ

FORMAT(12I6) (IB(i),JB(i),ICB(i), i=1,NBONA)

IB : atom involved in bond "i", bond does not contain hydrogen

JB : atom involved in bond "i", bond does not contain hydrogen

ICB : index into parameter arrays RK and REQ

FORMAT(12I6) (ITH(i),JTH(i),KTH(i),ICTH(i), i=1,NTHETH)

ITH : atom involved in angle "i", angle contains hydrogen

JTH : atom involved in angle "i", angle contains hydrogen

2/28/02

File formats Page 300

KTH : atom involved in angle "i", angle contains hydrogen

ICTH : index into parameter arrays TK and TEQ for angle

ITH(i)-JTH(i)-KTH(i)

FORMAT(12I6) (IT(i),JT(i),KT(i),ICT(i), i=1,NTHETA)

IT : atom involved in angle "i", angle does not contain hydrogen

JT : atom involved in angle "i", angle does not contain hydrogen

KT : atom involved in angle "i", angle does not contain hydrogen

ICT : index into parameter arrays TK and TEQ for angle

IT(i)-JT(i)-KT(i)

FORMAT(12I6) (IPH(i),JPH(i),KPH(i),LPH(i),ICPH(i), i=1,NPHIH)

IPH : atom involved in dihedral "i", dihedral contains hydrogen

JPH : atom involved in dihedral "i", dihedral contains hydrogen

KPH : atom involved in dihedral "i", dihedral contains hydrogen

LPH : atom involved in dihedral "i", dihedral contains hydrogen

ICPH : index into parameter arrays PK, PN, and PHASE for

dihedral IPH(i)-JPH(i)-KPH(i)-LPH(i)

FORMAT(12I6) (IP(i),JP(i),KP(i),LP(i),ICP(i), i=1,NPHIA)

IP : atom involved in dihedral "i", dihedral does not contain hydrogen

JP : atom involved in dihedral "i", dihedral does not contain hydrogen

KP : atom involved in dihedral "i", dihedral does not contain hydrogen

LP : atom involved in dihedral "i", dihedral does not contain hydrogen

ICP : index into parameter arrays PK, PN, and PHASE for

dihedral IPH(i)-JPH(i)-KPH(i)-LPH(i).

FORMAT(12I6) (NATEX(i), i=1,NEXT)

NATEX : the excluded atom list. To get the excluded list for atom

"i" you need to traverse the NUMEX list, adding up all

the previous NUMEX values, since NUMEX(i) holds the number

of excluded atoms for atom "i", not the index into the

NATEX list. Let IEXCL = SUM(NUMEX(j), j=1,i-1), then

excluded atoms are NATEX(IEXCL) to NATEX(IEXCL+NUMEX(i)).

The excluded atoms for each atom "i" must be in ascending

numerical order.

FORMAT(5E16.8) (ASOL(i), i=1,NPHB)

ASOL : the value for the r**12 term for hydrogen bonds of all

possible types. Index into these arrays is equivalent

to the CN1 and CN2 arrays, however the index is negative.

For example, for atoms i and j, with i < j, the index is

-(NTYPES*(IAC(i)-1)+IAC(j)).

2/28/02

File formats Page 301

FORMAT(5E16.8) (BSOL(i), i=1,NPHB)

BSOL : the value for the r**10 term for hydrogen bonds of all

possible types. Indexed like ASOL.

FORMAT(5E16.8) (HBCUT(i), i=1,NPHB)

HBCUT : no longer in use

FORMAT(20A4) (ISYMBL(i), i=1,NATOM)

ISYMBL : the AMBER atom types for each atom

FORMAT(20A4) (ITREE(i), i=1,NATOM)

ITREE : the list of tree joining information, classified into five

types. M -- main chain, S -- side chain, B -- branch point,

3 -- branch into three chains, E -- end of the chain

FORMAT(12I6) (JOIN(i), i=1,NATOM)

JOIN : tree joining information, potentially used in ancient

analysis programs. Currently unused in sander or gibbs.

FORMAT(12I6) (IROTAT(i) , i = 1, NATOM)

IROTAT : apparently the last atom that would move if atom i was

rotated, however the meaning has been lost over time.

Currently unused in sander or gibbs.

===

**** The following are only present if IFBOX .gt. 0 ****

FORMAT(12I6) IPTRES, NSPN, NSPSOL

IPTRES : final residue that is considered part of the solute,

reset in sander and gibbs

NSPM : total number of molecules

NSPSOL : the first solvent "molecule"

FORMAT(12I6) (NSP(i), i=1,NSPM)

NSP : the total number of atoms in each molecule,

necessary to correctly determine the pressure scaling

FORMAT(5E16.8) BETA, BOX(1), BOX(2), BOX(3)

BETA : periodic box, angle between the XY and YZ planes in

2/28/02

File formats Page 302

degrees.

BOX : the periodic box lengths in the X, Y, and Z directions

===

**** The following are only present if IFCAP .gt. 0 ****

FORMAT(12I6) NATCAP

NATCAP : last atom before the start of the cap of waters

placed by edit

FORMAT(5E16.8) CUTCAP, XCAP, YCAP, ZCAP

CUTCAP : the distance from the center of the cap to the outside

XCAP : X coordinate for the center of the cap

YCAP : Y coordinate for the center of the cap

ZCAP : Z coordinate for the center of the cap

===

**** The following are only present if IFPERT .gt. 0 ****

Note that the initial state, or equivalently the prep/link/edit state,

is represented by lambda=1 and the perturbed state, or final

state specified in parm, is the lambda=0 state.

FORMAT(12I6) (IBPER(i), JBPER(i), i=1,NBPER)

IBPER : atoms involved in perturbed bonds

JBPER : atoms involved in perturbed bonds

FORMAT(12I6) (ICBPER(i), i=1,2*NBPER)

ICBPER : pointer into the bond parameter arrays RK and REQ for the

perturbed bonds. ICBPER(i) represents lambda=1 and

ICBPER(i+NBPER) represents lambda=0.

FORMAT(12I6) (ITPER(i), JTPER(i), KTPER(i), i=1,NGPER)

IPTER : atoms involved in perturbed angles

JTPER : atoms involved in perturbed angles

KTPER : atoms involved in perturbed angles

FORMAT(12I6) (ICTPER(i), i=1,2*NGPER)

ICTPER : pointer into the angle parameter arrays TK and TEQ for

the perturbed angles. ICTPER(i) represents lambda=0 and

ICTPER(i+NGPER) represents lambda=1.

2/28/02

File formats Page 303

FORMAT(12I6) (IPPER(i), JPPER(i), KPPER(i), LPPER(i), i=1,NDPER)

IPTER : atoms involved in perturbed dihedrals

JPPER : atoms involved in perturbed dihedrals

KPPER : atoms involved in perturbed dihedrals

LPPER : atoms involved in pertrubed dihedrals

FORMAT(12I6) (ICPPER(i), i=1,2*NDPER)

ICPPER : pointer into the dihedral parameter arrays PK, PN and

PHASE for the perturbed dihedrals. ICPPER(i) represents

lambda=1 and ICPPER(i+NGPER) represents lambda=0.

FORMAT(20A4) (LABRES(i), i=1,NRES)

LABRES : residue names at lambda=0

FORMAT(20A4) (IGRPER(i), i=1,NATOM)

IGRPER : atomic names at lambda=0

FORMAT(20A4) (ISMPER(i), i=1,NATOM)

ISMPER : atomic symbols at lambda=0

FORMAT(5E16.8) (ALMPER(i), i=1,NATOM)

ALMPER : unused currently in gibbs

FORMAT(12I6) (IAPER(i), i=1,NATOM)

IAPER : IAPER(i) = 1 if the atom is being perturbed

FORMAT(12I6) (IACPER(i), i=1,NATOM)

IACPER : index for the atom types involved in Lennard Jones

interactions at lambda=0. Similar to IAC above.

See ICO above.

FORMAT(5E16.8) (CGPER(i), i=1,NATOM)

CGPER : atomic charges at lambda=0

===

**** The following is only present if IPOL .eq. 1 ***

FORMAT(5E18.8) (ATPOL(i), i=1,NATOM)

2/28/02

File formats Page 304

ATPOL : atomic polarizabilities

**** The following is only present if IPOL .eq. 1 .and. IFPERT .eq. 1 ****

FORMAT(5E18.8) (ATPOL1(i), i=1,NATOM)

ATPOL1 : atomic polarizabilities at lambda = 1 (above is at lambda = 0)

16.6. Appendix F: restart file format

FORMAT(20A4) ITITL

ITITL : the title of the current run, from the AMBER

parameter/topology file

FORMAT(I5,E15.7) NATOM,TIME

NATOM : total number of atoms in coordinate file

TIME : option, current time in the simulation (picoseconds)

Note: Amber programs check the NATOM representation: if it

contains 6 digits rather than 5, it is read in an I6 format,

instead of I5. This allows for simulations with more than

100,000 atoms, while preserving backwards compatibility with

older files.

FORMAT(6F12.7) (X(i), Y(i), Z(i), i = 1,NATOM)

X,Y,Z : coordinates

IF dynamics:

FORMAT(6F12.7) (VX(i), VY(i), VZ(i), i = 1,NATOM)

VX,VY,VZ : velocities

IF periodic box [4.0 and previous: only if constant pressure]:

FORMAT(6F12.7) BOX(1), BOX(2), BOX(3)

BOX : size of the periodic box

Note: in AMBER 4.1 if the ewald option is turned on, the box angles

will also be written out in the same format.

2/28/02

File formats Page 305

GIBBS will print extra information.

16.7. Appendix G: trajectory (coordinates or velocity) file format

FORMAT(20A4) ITITL

ITITL : the title of the current run, from the AMBER

parameter/topology file

The following is sequentially dropped for each snapshot of the

trajectory:

FORMAT(10F8.3) (X(i), Y(i), Z(i), i=1,NATOM)

X,Y,Z : coordinates or velocities

IF periodic box [4.0 and previous: only if constant pressure]:

FORMAT(10F8.3) BOX(1), BOX(2), BOX(3)

BOX : size of periodic box

2/28/02

References Page 306

17. References

1. D.A. Pearlman, D.A. Case, J.W. Caldwell, W.S. Ross, T.E. Cheatham, III, S. DeBolt, D.
Ferguson, G. Seibel & P. Kollman. AMBER, a package of computer programs for apply-
ing molecular mechanics, normal mode analysis, molecular dynamics and free energy cal-
culations to simulate the structural and energetic properties of molecules.Comp. Phys.
Commun. 91, 1-41 (1995).

2. S. Harvey & J.A. McCammon.Dynamics of Proteins and Nucleic Acids.Cambridge:
Cambridge University Press, (1987).

3. M.P. Allen & D.J. Tildesley.Computer Simulation of Liquids.Oxford: Clarendon Press,
(1987).

4. D. Frenkel & B. Smit.Understanding Molecular Simulation: From Algorithms to
Applications.San Diego: Academic Press, (1996).

5. W.F. van Gunsteren, P.K. Weiner & A.J. Wilkinson, eds..Computer Simulations of
Biomolecular Systems, Vol. 2..Leiden: ESCOM Science Publishers, (1993).

6. W.F. van Gunsteren, P.K. Weiner & A.J. Wilkinson, eds..Computer Simulations of
Biomolecular Systems, Vol. 3..Leiden: ESCOM Science Publishers, (1997).

7. L.R. Pratt & G. Hummer, eds..Simulation and Theory of Electrostatic Interactions in
Solution. Melville, NY: American Institute of Physics, (1999).

8. J.J. Vincent & K.M. Merz, Jr.. A highly portable parallel implementation of AMBER4
using the message passing interface standard.J. Computat. Chem.
16, 1420-1427 (1995).

9. J. Wang, P. Cieplak & P.A. Kollman. How well does a restrained electrostatic potential
(RESP) model perform in calcluating conformational energies of organic and biological
molecules?. J. Comput. Chem.21, 1049-1074 (2000).

10. P. Cieplak, J. Caldwell & P. Kollman. Molecular Mechanical Models for Organic and Bio-
logical Systems Going Beyond the Atom Centered Two Body Additive Approximation:
Aqueous Solution Free Energies of Methanol and N-Methyl Acetamide, Nucleic Acid
Base, and Amide Hydrogen Bonding and Chloroform/Water Partition Coefficients of the
Nucleic Acid Bases.J. Computat. Chem.22, 1048-1057 (2001).

11. R.W. Dixon & P.A. Kollman. Advancing Beyond the Atom-Centered Model in Additive
and Nonadditive Molecular Mechanics..J. Computat. Chem.18, 1632-1646 (1997).

12. E. Meng, P. Cieplak, J.W. Caldwell & P.A. Kollman. Accurate solvation free energies of
acetate and methylammonium ions calculated with a polarizable water model.J. Am.
Chem. Soc.116, 12061-12062 (1994).

13. W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz, Jr., D.M. Ferguson, D.C.
Spellmeyer, T. Fox, J.W. Caldwell & P.A. Kollman. A second generation force field for the
simulation of proteins, nucleic acids, and organic molecules.J. Am. Chem. Soc.
117, 5179-5197 (1995).

14. P.A. Kollman, R. Dixon, W. Cornell, T. Fox, C. Chipot & A. Pohorille. The develop-
ment/application of a ’minimalist’ organic/biochemical molecular mechanic force field
using a combination ofab initio calculations and experimental data. InComputer Simula-
tion of Biomolecular Systems, Vol. 3, A. Wilkinson, P. Weiner & W.F. van Gunsteren, Ed.
Elsevier, (1997). pp. 83-96.

2/28/02

References Page 307

15. M.D. Beachy & R.A. Friesner.J. Am. Chem. Soc.119, 5908-5920 (1997).

16. L. Wang, Y. Duan, R. Shortle, B. Imperiali & P.A. Kollman. Study of the stability and
unfolding mechanism of BBA1 by molecular dynamics simulations at different termpera-
tures. Prot. Sci. 8, 1292-1304 (1999).

17. J. Higo, N. Ito, M. Kuroda, S. Ono, N. Nakajima & H. Nakamura. Energy landscape of a
peptide consisting ofα -helix, 310 helix, β -turn, β -hairpin and other disordered conforma-

tions. Prot. Sci. 10, 1160-1171 (2001).

18. T.E. Cheatham, III, P. Cieplak & P.A. Kollman. A modified version of the Cornell et al.
force field with improved sugar pucker phases and helical repeat.J. Biomol. Struct. Dyn.
16, 845-862 (1999).

19. S.J. Weiner, P.A. Kollman, D.A. Case, U.C. Singh, C. Ghio, G. Alagona, S. Profeta, Jr. &
P. Weiner. A new force field for molecular mechanical simulation of nucleic acids and pro-
teins. J. Am. Chem. Soc.106, 765-784 (1984).

20. S.J. Weiner, P.A. Kollman, D.T. Nguyen & D.A. Case. An all-atom force field for simula-
tions of proteins and nucleic acids.J. Computat. Chem.7, 230-252 (1986).

21. J. Åqvist. Ion-water interaction potentials derived from free energy perturbation simula-
tions. J. Phys. Chem.94, 8021-8024 (1990).

22. T. Darden, D. Pearlman & L.G. Pedersen. Ionic charging free energies: Spherical versus
periodic boundary conditions.J. Chem. Phys.109, 10921-10935 (1998).

23. W.L. Jorgensen, J. Chandrasekhar, J. Madura & M.L. Klein. Comparison of Simple Poten-
tial Functions for Simulating Liquid Water.J. Chem. Phys.79, 926-935 (1983).

24. W.L. Jorgensen & J.D. Madura.Mol. Phys. 56, 1381 (1985).

25. M.W. Mahoney & W.L. Jorgensen. A five-site model for liquid water and the reproduction
of the density anomaly by rigid, nonpolarizable potential functions.J. Chem. Phys.
112, 8910-8922 (2000).

26. J.W. Caldwell & P.A. Kollman. Structure and properties of neat liquids using nonadditive
molecular dynamics: Water, methanol and N-methylacetamide.J. Phys. Chem.
99, 6208-6219 (1995).

27. H.J.C. Berendsen, J.R. Grigera & T.P. Straatsma. The missing term in effective pair poten-
tials. J. Phys. Chem.91, 6269-6271 (1987).

28. V. Tsui & D.A. Case. Theory and applications of the generalized Born solvation model in
macromolecular simulations.Biopolymers (Nucl. Acid. Sci.)56, 275-291 (2001).

29. V. Tsui & D.A. Case. Molecular dynamics simulations of nucleic acids using a generalized
Born solvation model.J. Am. Chem. Soc.122, 2489-2498 (2000).

30. B. Jayaram, D. Sprous & D.L. Beveridge. Solvation free energy of biomacromolecules:
Parameters for a modified generalized Born model consistent with the AMBER force
field. J. Phys. Chem. B102, 9571-9576 (1998).

31. A. Jakalian, B.L. Bush, D.B. Jack & C.I. Bayly. Fast, Efficient Generation of High-Quality
Atomic Charges. AM1-BCC Model: I. Method. J. Computat. Chem.
21, 132-146 (2000).

32. J. Wang & P.A. Kollman. Automatic Parameterization of Force Field by Systematic Search
and Genetic Algorithms.J. Computat. Chem.22, 1219-1228 (2001).

2/28/02

References Page 308

33. T.A. Halgren. Merck Molecular Force Field (MMFF94). Part I-V.J. Comput. Chem.
17, 490-641 (1996).

34. T. Darden, D. York & L. Pedersen. Particle mesh Ewald--an Nlog(N) method for Ewald
sums in large systems.J. Chem. Phys.98, 10089-10092 (1993).

35. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee & L.G. Pedersen. A smooth
particle mesh Ewald method.J. Chem. Phys.103, 8577-8593 (1995).

36. C. Sagui & T.A. Darden. P3M and PME: a comparison of the two methods. InSimulation
and Theory of Electrostatic Interactions in Solution, L.R. Pratt & G. Hummer, Ed.
Melville, NY: American Institute of Physics, (1999). pp. 104-113.

37. A. Toukmaji, C. Sagui, J. Board & T. Darden. Efficient particle-mesh Ewald based
approach to fixed and induced dipolar interactions.J. Chem. Phys.
113, 10913-10927 (2000).

38. G.D. Hawkins, C.J. Cramer & D.G. Truhlar. Pairwise solute descreening of solute charges
from a dielectric medium.Chem. Phys. Lett.246, 122-129 (1995).

39. G.D. Hawkins, C.J. Cramer & D.G. Truhlar. Parametrized models of aqueous free energies
of solvation based on pairwise descreening of solute atomic charges from a dielectric
medium. J. Phys. Chem.100, 19824-19839 (1996).

40. W.C. Still, A. Tempczyk, R.C. Hawley & T. Hendrickson. Semianalytical treatement of
solvation for molecular mechanics and dynamics.J. Am. Chem. Soc.
112, 6127-6129 (1990).

41. M. Schaefer & C. Froemmel. A precise analytical method for calculating the electrostatic
energy of macromolecules in aqueous solution.J. Mol. Biol. 216, 1045-1066 (1990).

42. M. Schaefer, H.W.T. Van Vlijmen & M. Karplus. Electrostatic contributions to molecular
free energies in solution..Adv. Protein Chem.51, 1-57 (1998).

43. D. Bashford & D.A. Case. Generalized Born Models of Macromolecular Solvation
Effects. Annu. Rev. Phys. Chem.51, 129-152 (2000).

44. A. Bondi. J. Chem. Phys.64, 441 (1964).

45. J. Srinivasan, M.W. Trevathan, P. Beroza & D.A. Case. Application of a pairwise general-
ized Born model to proteins and nucleic acids: inclusion of salt effects.Theor. Chem.
Acc. 101, 426-434 (1999).

46. A. Onufriev, D. Bashford & D.A. Case. Modification of the Generalized Born Model Suit-
able for Macromolecules.J. Phys. Chem. B104, 3712-3720 (2000).

47. J. Weiser, P.S. Shenkin & W.C. Still. Approximate Atomic Surfaces from Linear Combina-
tions of Pairwise Overlaps (LCPO).J. Computat. Chem.20, 217-230 (1999).

48. D. Sitkoff, K.A. Sharp & B. Honig. Accurate calculation of hydration free energies using
macroscopic solvent models.J. Phys. Chem.98, 1978-1988 (1994).

49. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola & J.R. Haak. Molecular
dynamics with coupling to an external bath.J. Chem. Phys.81, 3684-3690 (1984).

50. T. Morishita. Fluctuation formulas in molecular-dynamics simulations with the weak cou-
pling heat bath.J. Chem. Phys.113, 2976 (2000).

51. J.-P. Ryckaert, G. Ciccotti & H.J.C. Berendsen. Numerical integration of the cartesian
equations of motion of a system with constraints: Molecular dynamics of n-alkanes.J.
Computat. Phys.23, 327-341 (1977).

2/28/02

References Page 309

52. S. Miyamoto & P.A. Kollman. SETTLE: An analytical version of the SHAKE and RAT-
TLE algorithm for rigid water models.J. Computat. Chem.13, 952-962 (1992).

53. G. Hummer & A. Szabo. Calculation of free-energy differences from computer simula-
tions of initial and final states.J. Chem. Phys.105, 2004-2010 (1996).

54. T. Simonson. Free energy calculations. InComputational Biochemistry and Biophysics,
O. Becker, A.D. MacKerell, B. Roux & M. Watanabe, Ed. New York: Marcel Dekker,
(2001).

55. A. Kalk & H.J.C. Berendsen. Proton magnetic relaxation and spin diffusion in proteins.
J. Magn. Reson.24, 343-366 (1976).

56. E.T. Olejniczak & M.A. Weiss. Are methyl groups relaxation sinks in small proteins?.J.
Magn. Reson.86, 148-155 (1990).

57. K.J. Cross & P.E. Wright. Calibration of ring-current models for the heme ring.J. Magn.
Reson. 64, 220-231 (1985).

58. K. Ösapay & D.A. Case. A new analysis of proton chemical shifts in proteins.J. Am.
Chem. Soc.113, 9436-9444 (1991).

59. D.A. Case. Calibration of ring-current effects in proteins and nucleic acids.J. Biomol.
NMR 6, 341-346 (1995).

60. C.R. Sanders, II, B.J. Hare, K.P. How ard & J.H. Prestegard. Magnetically-oriented phos-
pholipid micelles as a tool for the study of membrane-associated molecules.Prog. NMR
Spectr. 26, 421-444 (1994).

61. D.A. Case. Calculations of NMR dipolar coupling strengths in model peptides.J. Biomol.
NMR 15, 95-102 (1999).

62. B.M. Duggan, G.B. Legge, H.J. Dyson & P.E. Wright. SANE (Structure Assisted NOE
Evaluation): An automated model-based approach for NOE assignment.J. Biomol. NMR
19, 321-329 (2001).

63. G.P. Gippert, P.F. Yip, P.E. Wright & D.A. Case. Computational methods for determining
protein structures from NMR data.Biochem. Pharm.40, 15-22 (1990).

64. D.A. Case & P.E. Wright. Determination of high resolution NMR structures of proteins.
In NMR in Proteins, G.M. Clore & A. Gronenborn, Ed. New York: MacMillan, (1993).
pp. 53-91.

65. D.A. Case, H.J. Dyson & P.E. Wright. Use of chemical shifts and coupling constants in
nuclear magnetic resonance structural studies on peptides and proteins.Meth. Enzymol.
239, 392-416 (1994).

66. R. Brüschweiler & D.A. Case. Characterization of biomolecular structure and dynamics
by NMR cross-relaxation.Prog. NMR Spectr.26, 27-58 (1994).

67. D.A. Case. The use of chemical shifts and their anisotropies in biomolecular structure
determination. Curr. Opin. Struct. Biol. 8, 624-630 (1998).

68. D.S. Wishart & D.A. Case. Use of chemical shifts in macromolecular structure determina-
tion.. Meth. Enzymol.338, 3-34 (2001).

69. A.E. Torda, R.M. Scheek & W.F. VanGunsteren. Time-dependent distance restraints in
molecular dynamics simulations.Chem. Phys. Lett.157, 289-294 (1989).

70. D.A. Pearlman & P.A. Kollman. Are time-averaged restraints necessary for nuclear mag-
netic resonance refinement? A model study for DNA.J. Mol. Biol.

2/28/02

References Page 310

220, 457-479 (1991).

71. D.A. Pearlman. How well to time-averaged J-coupling restraints work?.J. Biomol.
NMR 4, 279-299 (1994).

72. D.A. Pearlman. How is an NMR structure best defined? An analysis of molecular dynam-
ics distance-based approaches.J. Biomol. NMR 4, 1-16 (1994).

73. R. Elber & M. Karplus. Enchanced sampling in molecular dynamics. Use of the time-
dependent Hartree approximation for a simulation of carbon monoxide diffusion through
myoglobin. J. Am. Chem. Soc.112, 9161-9175 (1990).

74. A. Roitberg & R. Elber.J. Chem. Phys.95, 9277 (1991).

75. C. Simmerling & R. Elber. Hydrophobic "collapse" in a cyclic hexapeptide: Computer
simulations of CHDLFC and CAAAAC in water. J. Am. Chem. Soc.
116, 2534-2547 (1994).

76. C. Simmerling, T. Fox & P.A. Kollman. Use of Locally Enhanced Sampling in Free
Energy Calculations: Testing and Application of the alpha to beta Anomerization of Glu-
cose.. J. Am. Chem. Soc.120, 5771-5782 (1998).

77. C. Simmerling, J.L. Miller & P.A. Kollman. Combined locally enchanced sampling and
particle mesh Ewald as a strategy to locate the experimental structure of a nonhelical
nucleic acid. J. Am. Chem. Soc.120, 7149-7155 (1998).

78. C. Simmerling, M.R. Lee, A.R. Ortiz, A. Kolinski, J. Skolnick & P.A. Kollman. Combin-
ing MONSSTER and LES/PME to Predict Protein Structure from Amino Acid Sequence:
Applicatin to the Small Protein CMTI-1.J. Am. Chem. Soc.122, 8392-8402 (2000).

79. A. Miranker & M. Karplus. Functionality maps of binding sites: A multiple copy simulta-
neous search method.Proteins: Str. Funct. Gen.11, 29-34 (1991).

80. J.E. Straub & M. Karplus.J. Chem. Phys.94, 6737 (1991).

81. A. Ulitsky & R. Elber. J. Chem. Phys.98, 3380 (1993).

82. D.L. Beveridge & F.M. DiCapua. Free energy simulation via molecular simulations:
Applications to chemical and biomolecular systems.Annu. Rev. Biophys. Biophys.
Chem. 18, 431-492 (1989).

83. P. Kollman. Free energy calculations: Applications to chemical and biochemical phenom-
ena. Chem. Rev.93, 2395-2417 (1993).

84. D.A. Pearlman & B.G. Rao. Free energy calculations: Methods and applications. In
Encyclopedia of Computational Chemistry, P. von R. Schleyer, N.L. Allinger, T. Clark, J.
Gasteiger, P.A. Kollman & H.F. Schaefer, III, Ed. Chichester: John Wiley, (1998). pp.
1036-1061.

85. D.A. Pearlman & P.A. Kollman. A New Method for Carrying Out Free Energy Perturba-
tion Calculations: Dynamically Modified Windows. J. Chem. PHys.
90, 2460-2470 (1989).

86. D.A. Pearlman & P.A. Kollman. The overlooked bond-stretching contribution in free
energy perturbation calculations.J. Chem. Phys.94, 4532-4545 (1991).

87. D.A. Pearlman. Determining the contributions of constraints in free energy calculations:
Development, characterization, and recommendations.J. Chem. Phys.
98, 8946-8957 (1993).

2/28/02

References Page 311

88. D.A. Pearlman. Free energy derivatives: A new method for probing the convergence prob-
lem in free energy calculations.J. Computat. Chem.15, 105-123 (1994).

89. D.A. Pearlman. A comparison of alternative approaches to free energy calculations.J.
Phys. Chem.98, 1487-1493 (1994).

90. C. Chipot, P.A. Kollman & D.A. Pearlman. Alternative approaches to potential of mean
force calculations: free energy pertubation versus thermodynamics integration. Case study
of some reoresentative nonpolar interactions.J. Comput. Chem17, 1112-1131 (1996).

91. R.J. Radmer & P.A. Kollman. Free energy calculation methods: A theoretical and empiri-
cal comparison of numerical errors and a new method for qualitative estimates of free
energy changes.J. Computat. Chem.18, 902-919 (1997).

92. G. Hummer. Fast-growth thermodynamic integration: Error and efficiency analysis.J.
Chem. Phys.114, 7330-7337 (2001).

93. S.H. Fleischman & C.L. Brooks, III. Thermodynamic calculations on biological systems:
Solution properties of alochols and alkanes.J. Chem. Phys.87, 221-234 (1988).

94. H.-A. Yu & M. Karplus. A thermodynamic analysis of solvation.J. Chem. Phys.
89, 2366-2379 (1988).

95. B. Honig & A. Nicholls. Classical electrostatics in biology and chemistry.Science
268, 1144-1149 (1995).

96. M.L. Connolly. Analytical molecular surface calculation.J. Appl. Cryst.
16, 548-558 (1983).

97. J. Srinivasan, T.E. Cheatham, III, P. Kollman & D.A. Case. Continuum Solvent Studies of
the Stability of DNA, RNA, and Phosphoramidate--DNA Helices.J. Am. Chem. Soc.
120, 9401-9409 (1998).

98. P.A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan,
W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D.A. Case & T.E. Cheatham, III. Calculat-
ing Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics
and Continuum Models.Accts. Chem. Res.33, 889-897 (2000).

99. W. Wang & P. Kollman. Free Energy Calculations on Dimer Stability of the HIV Protease
Using Molecular Dynamics and a Continuum Solvent Model.J. Mol. Biol.
303, 567 (2000).

100. C. Reyes & P. Kollman. Structure and Thermodynamics of RNA-protein Binding: Using
Molecular Dynamics and Free Energy Analyses to Calculate the Free Energies of Binding
and Conformational Change.J. Mol. Biol. 297, 1145-1158 (2000).

101. M.R. Lee, Y. Duan & P.A. Kollman. Use of MM-PB/SA in Estimating the Free Energies
of Proteins: Application to Native, Intermediates, and Unfolded Vilin Headpiece.Pro-
teins 39, 309-316 (2000).

102. J. Wang, P. Morin, W. Wang & P.A. Kollman. Use of MM-PBSA in Reproducing the
Binding Free Energies to HIV-1 RT of TIBO Derivatives and Predicting the Binding Mode
to HIV-1 RT of Efavirenz by Docking and MM-PBSA. J. Am. Chem. Soc.
123, 5221-5230 (2001).

103. S. Huo, I. Massova & P.A. Kollman. Computational Alanine Scanning of the 1:1 Human
Growth Hormone-Receptor Complex.J. Computat. Chem.23, 15-27 (2002).

104. R. Radmer & P. Kollman. The application of three approximate free energy calculations
methods to structure based ligand design: Trypsin and its complex with inhibitors.J.

2/28/02

References Page 312

Comput.-Aided Mol. Design12, 215-228 (1998).

105. S.R. Niketic & K. Rasmussen. InThe Consistent Force Field: A Documentation, New
York: Springer-Verlag, (1977).

106. C. Cerjan & W.H. Miller.J. Chem. Phys.75, 2800 (1981).

107. D.T. Nguyen & D.A. Case. On finding stationary states on large-molecule potential energy
surfaces. J. Phys. Chem.89, 4020-4026 (1985).

108. G. Lamm & A. Szabo. Langevin modes of macromolecules.J. Chem. Phys.
85, 7334-7348 (1986).

109. J. Kottalam & D.A. Case. Langevin modes of macromolecules: application to crambin and
DNA hexamers. Biopolymers 29, 1409-1421 (1990).

110. R.M. Levy, M. Karplus, J. Kushick & D. Perahia. Evaluation of the configurational
entropy for proteins: Application to molecular dynamics simulations of anα -helix.
Macromolecules17, 1370-1374 (1984).

111. C.I. Bayly, P. Cieplak, W.D. Cornell & P.A. Kollman. A Well-Behaved Electrostatic Poten-
tial Based Method Using Charge Restraints For Determining Atom-Centered Charges: The
RESP Model. J. Phys. Chem.97, 10269 (1993).

112. W.D. Cornell, P. Cieplak, C.I. Bayly & P.A. Kollman. Application of RESP charges to cal-
culate conformational energies, hydrogen bond energies and free energies of solvation.J.
Am. Chem. Soc.115, 9620-9631 (1993).

113. P. Cieplak, W.D. Cornell, C. Bayly & P.A. Kollman. Application to the multimolecule and
multiconformational RESP methodology to biopolymers: Charge derivation for DNA,
RNA and proteins.J. Computat. Chem.16, 1357-1377 (1995).

114. W.S. Ross & C.C. Hardin. Ion-induced stabilization of the G-DNA quadruplex: Free
energy perturbation studies.J. Am. Chem. Soc.116, 6070-6080 (1994).

115. A. Vedani & D.W. Huhta.J. Am. Chem. Soc.112, 4759-4767 (1990).

116. D.L. Veenstra, D.M. Ferguson & P.A. Kollman.J. Computat. Chem.13, 971-978 (1992).

117. F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen & R. Taylor.J. Chem.
Soc. Perkin Trans. IIS1-S19 (1987).

118. M.D. Harmony, R.W. Laurie, R.L. Kuczkowski, R.H. Schwendemann, D.A. Ramsay, F.J.
Lovas, W.J. Lafferty & A.G. Maki.J. Phys. Chem. Ref. Data8, 619 (1979).

119. A.J. Hopfinger & R.A. Pearlstein.J. Compuat. Chem.5, 486 (1985).

120. J.F. Cannon.J. Computat. Chem.14, 995-1005 (1993).

121. A. St.-Amant, W.D. Cornell, P.A. Kollman & T.A. Halgren. Calculation of molecular
geometries, relative conformational energies, dipole moments, and molecular electrostatic
potential fitted charges of small organic molecules of biochemical interest by density func-
tional theory. J. Computat. Chem.16, 1483-1506 (1995).

122. A.E. Howard, P. Cieplak & P.A. Kollman. A Molecular Mechanical Model that Repro-
duces the Relative Energies for Chair and Twist-Boat Conformations of 1,3-Dioxanes.J.
Comp. Chem.16, 243-261 (1995).

2/28/02

Index 313

Index

This index is designed to help locate information for particular variable names. The Table of
Contents should be used to identify subject areas.

A

add 41
addAtomTypes 42
addIons 42
addIons2 43
addPath 43
addPdbAtomMap 43
addPdbResMap 43
aexp 117
alias 44
all 107
almda 178
almdel 178
almdl0 181
almstp(1) 182
amxdel 181
amxmov 181
amxrst 181
angav e 108
angavi 109
angle 107
arange 117
atnam 112
atomn 141
attract 107
awt 117

B

beta 164
bond 45, 107
bondByDistance 45
boxx 164

C

center 45
charge 46
check 46
chkvir 141
chngmask 100
clambda 103
combine 46

comp 96, 167
copy 47
corrsl 181
createAtom 47
createParmset 48
createResidue 48
createUnit 48
cter 120
ctimt 178
cut 89, 108, 174
cut2nd 174
cutprt 174

D

dataset 123
dcut 123
deleteBond 48
desc 49
dielc 89, 174
dij 123
dipmass 102
dipole 111
diptau 102
diptol 102
disang 111
disave 108
disavi 109
dlmax 181
dlmin 181
dobs 123
do_debugf 141
do_dir,do_rec... 141
drms 93
dsum_tol 99
dt 93, 168
dta 182
dtemp 95, 166
dtuse 166
dumpave 111
dumpfrc 141
dwt 123
dx0 93
dxm 93

2/28/02

Index 314

E

edit 50
eedmeth 100
eedtbdns 100
elec 107
emix 117
ew_coeff 99
ew_type 99
extdiel 91

F

fcap 97, 182
frameon 100
frc_int 100
freezemol 123

G

gbsa 91
gigj 123
grnam1 115
grnam2 115
groupSelectedAtoms 50

H

hb 107
heat 94, 164
help 50
hwtnm1 97, 183
hwtnm2 97, 183

I

i3bod 163
ialtd 113
iat 112
iatcmp 175
iatr 119
iavdel 181
iavdem 181
iavslm 180
iavslp 180
ibelly 91, 162
ibigm 177
ibndlm 180
ibxrd 164

icfe 103
ichdna 163
icmpdr 176
id 123
id2o 118
idecomp 88
idiel 171
idifrg 179
idsx0 172
idwide 179
ielper 171
ifntyp 116
iftime 177
iftres 164
ifvari 113
ig 94, 164
igb 90
igr1 115
igr2 115
ihp 117
iinc 106
imgslt 172
imin 86
impose 51
improp 107
imult 106, 113
indmeth 102
init 168
intdiel 91
intern 107
intprt 173
intr 177
invwt1,invwt2 117
ioleps 173
ioutfm 88, 175
iperat 175
ipnlty 97
ipol 89, 163
iprot 119, 121
ir6 116
iresid 112
irest 87, 162
irstdip 102
irstyp 113
isande 175
iscale 97
isftrp 177
ishkfl 169
isldyn 178

2/28/02

Index 315

islp 180
isolvp 166
istep1 106
istep2 106
isvat 167
itgtmd 92
itimth 169
itip 174
itrslu 173
ivcap 97, 182
iv emax 168
iwrap 87
ixpk 116

J

jd 123
jfastw 96, 170
jhp 117

K

klambda 103

L

list 51
listin 111
listout 111
loadAmberParams 52
loadAmberPrep 52
loadOff 53
loadPdb 53
loadPdbUsingSeq 54
logFile 55

M

makeANG_RST 128
makeCHIR_RST 130
makeDIST_RST 125
makeVOL_RST 131
matcap 97
maxcyc 93
maxiter 102
measureGeom 55
mlimit 99
mxsub 97

N

namr 119
natcap 182
natr 119
nb 107
nbflag 99
nbtell 99
ncmpdr 176
ncorc 169
ncyc 93
ndfmin 167
ndip 123
ndmpmc 179
neglgdel 141
netfrc 100
new2oldparm 4
nfft1 98
nfft2 98
nfft3 98
ninc 113
nme 120
nmpmc 120
nmropt 86
noeskp 97
noesy 107, 111
norsts 181
npeak 117
nprot 119, 120
npscal 166
nranatm 141
nrespa 94
nring 119
nrun 165
nscm 93, 167
nsel 166
nsnb 89, 171
nstep0 108
nstep1 112
nstep2 112
nstlim 93, 168
nstmeq 179
nstmul 179
nstpa 182
nstpe 182
ntatdp 176
ntave 87
ntb 89, 164
ntc 96, 168

2/28/02

Index 316

ntcm 167
nter 120
ntf 88, 170
ntid 171
ntmin 93
ntnb 171
ntp 95, 166
ntpr 87, 174
ntr 91, 176
ntrx 87, 177
ntsd 181
ntt 94, 165
ntwe 88, 175
ntwem 175
ntwprt 88, 176
ntwr 87
ntwv 88, 174
ntwvm 175
ntwx 88, 174
ntwxm 175
ntx 86, 163
ntxo 87, 163
num_datasets 123
nxpk 116

O

obs 119, 121
offset 91
omega 118
opta1 120
opta2 121
opt_infl 99
optkon 121
optomg 120
optphi 120
opttet 120
order 98
oscale 118
owtnm 97, 183

P

pcshift 111
pencut 98
plevel 96
pres0 96, 167

Q

quit 56

R

r1a→r4A 114
r1→r4 114
ranseed 141
rbornstat 91
remove 56
repulse 107
rest 107
restl 107
rests 107
rjcoef 115
rk2a,rk3a 114
rk2,rk3 114
rmsfrc 141
rstar 107
rsum_tol 99
rwell 177

S

s11,s12,s13,s22,s23 123
saltcon 91
saveAmberParm 57
saveAmberParmPert 57
saveAmberParmPol 57
saveAmberParmPolPert 58
saveOff 58
savePdb 59
scaldip 102
scaleCharges 59
scalm 97
scee 89, 174
scnb 89, 174
senergy 132
sequence 59
set 60
setBox 62
shcut 119
shifts 107, 111
short 107
shrang 119
skinnb 99
softr 107
solvateBox 62

2/28/02

Index 317

solvateCap 64
solvateDontClip 64
solvateOct 65
solvateShell 65
source 66
stpmlt 108
str 119
surften 91
sviol 132
sviol2 132

T

t 93, 168
taumet 118
taup 96, 167
taur 177
taurot 118
tausw 98
tautp 95, 108, 166
tauts 166
temp0 94, 108, 166
temp0les 94, 108
tempi 94, 164
tgtmdfrc 92
tgtrmsd 92, 108
timlim 162
tol 96, 169
tolpro 121
tolr2 169
torave 108
toravi 109
torsion 107
transform 66
translate 67
type 106

U

use_pme 100

V

value1 106
value2 106
vdw 107
vdwmeth 100
verbose 98
verbosity 67

vlimit 95, 168
vrand 95

W

watnam 97, 183
wt 119, 121

Z

zerochg 141
zerodip 141
zerovdw 141
zMatrix 67

2/28/02

Index 318

2/28/02

	Introduction
	What to read next
	Information flow in Amber.
	Preparatory programs
	Simulation programs
	Analysis programs

	Installation of Amber 7
	More information on parallel machines or clusters
	Installing on Windows
	Testing.
	Memory Requirements.

	Basic tutorials

	Specifying a force field
	Description of the database files
	Specifying which force field you want in LEaP
	1999 and 2002 force fields
	The Cornell et al. (1994) force field
	The Weiner et al. (1984,1986) force fields
	Ions
	Solvent models

	LEaP
	Introduction
	Concepts
	Commands
	Variables
	Objects

	Starting LEaP
	Verbosity
	Log File

	Using LEaP
	Universe Editor
	Unit Editor
	Atom Properties Editor
	Parmset Editor

	Basic instructions for using LEaP with AMBER
	Building a Molecule For Molecular Mechanics
	Amino Acid Residues
	Nucleic Acid Residues
	Miscellaneous Residues

	Commands
	add
	addAtomTypes
	addIons
	addIons2
	addPath
	addPdbAtomMap
	addPdbResMap
	alias
	bond
	bondByDistance
	center
	charge
	check
	combine
	copy
	createAtom
	createParmset
	createResidue
	createUnit
	deleteBond
	desc
	edit
	groupSelectedAtoms
	help
	impose
	list
	loadAmberParams
	loadAmberPrep
	loadOff
	loadPdb
	loadPdbUsingSeq
	logFile
	measureGeom
	quit
	remove
	saveAmberParm
	saveAmberParmPol
	saveAmberParmPert
	saveAmberParmPolPert
	saveOff
	savePdb
	scaleCharges
	sequence
	set
	setBox
	solvateBox
	solvateCap
	solvateDontClip
	solvateOct
	solvateShell
	source
	transform
	translate
	verbosity
	zMatrix

	Antechamber
	Principal programs
	antechamber
	parmchk
	parmcal

	A simple example for antechamber
	Programs called by antechamber
	atomtype
	bcc
	bcctype
	prepgen
	espgen
	respgen

	Miscellaneous programs
	crdgrow
	delphigen
	parmjoin

	Sander
	Introduction.
	Credits
	File usage.
	Example input files
	Overview of the information in the input file
	SECTION ONE: General minimization and dynamics parameters.
	General flags describing the calculation.
	Nature and format of the input.
	Nature and format of the output.
	Potential function.
	Generalized Born/Surface Area options
	Frozen or restrained atoms.
	Targeted MD
	Energy minimization.
	Molecular dynamics.
	Temperature regulation.
	Pressure regulation
	SHAKE bond length constraints.
	Water cap.
	NMR refinement options.
	Particle Mesh Ewald.
	Extra point options
	Polarizable potentials
	Free energies using thermodynamic integration

	SECTION TWO: Weight change information.
	SECTION THREE: File redirection commands.
	SECTION FOUR: Distance, angle and torsional restraints.
	SECTION FIVE: NOESY volume restraints.
	SECTION SIX: Chemical shift restraints.
	SECTION SEVEN: Direct dipolar coupling restraints
	Overview of NMR refinement using SANDER.
	Preparing restraint files for Sander
	Preparing distance restraints: makeDIST_RST.
	Preparing torsion angle restraints: makeANG_RST
	Chirality restraints: makeCHIR_RST
	NOESY volume restraints: makeVOL_RST
	Direct dipolar coupling restraints: makeDIP_RST
	Getting summaries of NMR violations
	Time-averaged restraints.
	Multiple copies refinement using LES
	Some sample input files

	Getting debugging information

	LES
	Background.
	Preparing to use LES with AMBER
	Using the ADDLES program
	More information on the ADDLES commands and options
	Using the new topology/coordinate files with SANDER
	Case studies: Examples of application of LES
	Enhanced sampling for individual functional groups: Glucose.
	Enhanced sampling for a small region: Application of LES to a nucleic acid loop
	Improving conformational sampling in a small peptide

	Unresolved issues with LES in AMBER

	Gibbs
	Introduction
	Free Energy Techniques Available in GIBBS
	Understanding the Output
	Defining States and Obtaining Appropriate Starting Coordinates
	Suggested introductory references
	Assigning files
	Control parameters
	Choices Affecting Free Energy Calculations
	What method should be used to calculate the free energy?
	Enthalpies and entropies
	Mixing rules for vanishing atoms
	Using Dynamically Modified Windows
	Potential of Mean Force (PMF) calculations
	Error estimates and convergence
	Changing parameters versus dual topologies

	ptraj
	ptraj command prerequisites
	ptraj input/output commands
	ptraj commands that modify the state
	ptraj action commands
	hydrogen bonding facility
	rdparm

	Carnal
	Introduction
	Input
	Output

	Analin introduction
	Summary of Analin Sections
	A Simple Analin Example

	Analin Syntax Specification
	Examples
	Simple coordinate averaging
	Simple distance, angle, and torsion measurements
	RMS deviation
	Coordinate selection: waters
	Radial distance distributions
	Hbond examples

	MM-PBSA
	General instructions
	Preparing the input file
	Auxiliary programs used by MM-PBSA

	Profec
	Introduction
	makeGrid
	makeGrid input format
	makeDiffGrid
	Field
	Data formats

	Nmode
	Introduction
	General description
	Files
	Input description
	quasih
	nmanal
	lmanal

	Resp
	Miscellaneous
	nucgen
	ambpdb
	protonate
	pol_h and gwh
	intense
	spectrum
	fantasian

	Anal
	Introduction
	Files
	Input description

	Appendices
	Appendix A: Namelist Input Syntax
	Appendix B: GROUP Specification
	Appendix C: Parameter Development
	Appendix D: Charge fitting philosophy
	Appendix E: parameter file format
	Appendix F: restart file format
	Appendix G: trajectory (coordinates or velocity) file format

	References

